
Comprior Documentation

Cindy Perscheid

Jul 12, 2021

Contents:

1 Installation and Usage 1
1.1 Install and Run Comprior from Source . 1

1.1.1 1. Installation . 1
1.1.2 2. Usage . 2

1.2 Run Comprior in a Docker Container . 2
1.3 Installing Java JDK and Maven on Ubuntu . 2
1.4 Troubleshooting . 3

2 Example Use Cases 7
2.1 Breast Cancer . 7

2.1.1 Execution via Source Installation . 7
2.1.2 Execution via Docker Image . 8

2.2 Glioma . 8
2.2.1 Execution via Source Installation . 9
2.2.2 Execution via Docker Image . 9

2.3 Output Generated by Comprior . 10
2.3.1 Detailed Processing Outputs . 10
2.3.2 Plots on Datasets . 10

2.3.2.1 MDS plot . 10
2.3.2.2 Density Plot . 10
2.3.2.3 Box Plot . 13

2.3.3 Knowledge Base Coverage . 13
2.3.3.1 Gene Coverage Plots . 13
2.3.3.2 Pathway Coverage Plots . 14

2.3.4 Feature Rankings . 14
2.3.4.1 Ranking Overlaps . 14

2.3.5 Feature Annotations and Enrichments . 15
2.3.5.1 Annotation Overlaps . 15
2.3.5.2 Enrichment Overlaps . 15

2.3.6 Classification Performance . 18
2.3.7 Feature Selection Runtimes . 18

3 Input Data Sets 21
3.1 Gene Expression Data . 21
3.2 Metadata . 21
3.3 Data for Cross-Validation . 22

i

4 Configuration Parameters 23
4.1 General . 23
4.2 R . 23
4.3 Java . 24
4.4 Dataset . 24
4.5 Preprocessing . 24
4.6 Gene Selection - General . 24
4.7 Gene Selection - Methods . 24
4.8 Evaluation . 25
4.9 Rankings . 26
4.10 Classification . 26
4.11 Prediction (not implemented yet) . 27
4.12 Enrichr . 27
4.13 OpenTargets . 27
4.14 KEGG . 27
4.15 UMLS (needed to transform search terms into CUIs for using DisGeNET) 28
4.16 DisGeNET . 28
4.17 PathwayCommons . 28
4.18 BiomaRt . 28
4.19 gConvert . 28

5 Folder Structure - Where to find what Files (In- and Output) 29
5.1 input/ . 29
5.2 intermediate/ . 30
5.3 results/ . 30

6 Knowledge Bases 31
6.1 DisGeNET . 31
6.2 OpenTargets . 31
6.3 KEGG . 32

6.3.1 Retrieving Relevant Genes from Pathway Information . 32
6.3.2 Gene Association Score Computation from Network Information 32

6.4 PathwayCommons . 32

7 Prior Knowledge Approaches 33
7.1 Modifying Prior Knowledge Approaches . 33

7.1.1 Filtering . 33
7.1.2 Extension . 34

7.2 Combining Approaches . 34
7.2.1 LassoPenalty . 34
7.2.2 WeightedScore . 34

7.3 Network/Pathway Approaches . 34
7.3.1 NetworkActivity . 34
7.3.2 CorgsNetworkActivity . 35

8 Extending Comprior - How-Tos 37
8.1 Add New Preprocessing Functionality . 37

8.1.1 1. Implement a new Preprocessor . 37
8.1.2 2. Update the Config File (optional) . 38
8.1.3 3. Include the Preprocessor in the Execution Pipeline . 38

8.2 Add a New Knowledge Base . 38
8.2.1 1 Implement KnowledgeBase Class . 38
8.2.2 2 Implement a Pathway Parser (optional) . 39
8.2.3 3 Implement Web Service Accessing Class . 40
8.2.4 4 Update the Config File . 40

ii

8.2.5 5 Register the Knowledge Base at KnowledgeBaseFactory 41
8.3 Add a new Feature Selector Approach . 41

8.3.1 1a. Implement a Feature Selector . 41
8.3.2 1b. Implement a Network Selector . 42
8.3.3 2. Update the Config File . 42
8.3.4 3. Register Feature/Network Selection Approach to the FeatureSelectorFactory 43

8.4 Add Custom Code from R/Java/another Programming Languages 43
8.4.1 Invoking R or Java Code . 43
8.4.2 Invoking Code from Another Programming Language than R or Java 44

9 Python Code Documentation 45
9.1 pipeline module . 45
9.2 benchutils module . 47
9.3 preprocessing module . 51
9.4 featureselection module . 53
9.5 knowledgebases module . 70
9.6 evaluation module . 82

10 R Code Documentation 91
10.1 Feature Selection . 91
10.2 Utility . 94

11 Java Code Documentation 101
11.1 Feature Selection . 101
11.2 Evaluation . 107

12 System Architecture 117
12.1 Components Architecture . 117
12.2 preprocessing Class Diagram . 118
12.3 featureselection Class Diagram . 119
12.4 knowledgebases Class Diagram . 119
12.5 evaluation Class Diagram . 120

13 Indices and tables 121

Python Module Index 123

Index 125

iii

iv

CHAPTER 1

Installation and Usage

For working with Comprior, you have two options:

• Run Comprior in a Docker Container - for just executing Comprior with a custom data set and configuration

• Install and Run Comprior from Source - for developing new approaches and extending Comprior

1.1 Install and Run Comprior from Source

• Prerequisites: R 3.5+, Python 3.5+, Java with JDK, and Maven. See in Installing Java JDK and Maven on
Ubuntu how to install JDK and Maven.

1.1.1 1. Installation

• check out the repository on your machine (or download the sources from https://github.com/CPerscheid/
Comprior/archive/master.zip):

git clone https://github.com/CPerscheid/Comprior.git

• Run the installation bash script install.sh (if your are on MacOS, use install_macos.sh) and let it write its output
into a file (the tee command prints the output to both command line and a file) - installation execution requires
root access rights:

sudo ./install.sh 2>&1 | tee installout.out

• go grab some healthy snacks, for this might take a while depending on what is already installed on your machine
(a couple of hours in the worst case) :-)

• check code/configs/config.ini if the variables homePath (path to Comprior’s root directory), RscriptLocation
(path to your Rscript), and JavaLocation (path to your Java location) point to the right locations.

1

https://github.com/CPerscheid/Comprior/archive/master.zip
https://github.com/CPerscheid/Comprior/archive/master.zip

Comprior Documentation

1.1.2 2. Usage

• Prior information: In order to enable a flexible pipeline design for users, Comprior makes use of con-
fig files. All config files are to be stored in code/configs directory. The main config file is located at
code/configs/config.ini. It is recommended not to be changed, as it specifies all parameters that Comprior needs
for functioning properly, including access points to knowledge base web services and output folder structure.
Instead, users can specify an own config file that contains only those parameters they want to overwrite from
config.ini, e.g. where the input data is located or what feature selectors to apply. Store your custom config file
in the code/configs/ directory. For a complete overview of the input parameters, see Configuration Parameters.
If you write an own config file, make sure to provide it as input parameter for the framework (config.ini will
always be loaded by default)

• To start Comprior

– navigate to code/Python/comprior:

cd code/Python/comprior

– start Comprior (optionally provide a custom config file):

python3 pipeline.py --config ../../configs/exampleconfig.ini

• Check your results in data/results/example - see Folder Structure - Where to find what Files (In- and Output) for
where to find what results and Output Generated by Comprior for a more detailed explanation on the generated
plots.

1.2 Run Comprior in a Docker Container

• Prerequisites: Docker

• check out the repository on your machine (or download the sources from https://github.com/CPerscheid/
Comprior/archive/master.zip):

git clone https://github.com/CPerscheid/Comprior.git

• Via command line, navigate to Comprior/ where the Dockerfile is located and create the image using root
privileges (this might take a while):

cd Comprior
sudo docker build -t comprior .

• provide the absolute path of your Comprior/comprior_docker directory as mounting directory (it contains the
config file and input data sets), and the config file as parameter (note the two dashes there) to Comprior and run
it with root privileges:

sudo docker run -it --rm -v /your/absolute/path/to/Comprior/comprior_docker:/home/
→˓app/data comprior ---config /home/app/data/dockerexampleconfig.ini

1.3 Installing Java JDK and Maven on Ubuntu

• install a JDK distribution for your Ubuntu version, e.g.:

2 Chapter 1. Installation and Usage

https://docs.docker.com/get-docker/
https://github.com/CPerscheid/Comprior/archive/master.zip
https://github.com/CPerscheid/Comprior/archive/master.zip

Comprior Documentation

sudo apt-get install openjdk-8-jdk

or:

apt install default-jdk

• let your JAVA_HOME variable point to your installed JDK. Typically, Ubuntu installs it in /usr/lib/jvm, so find
it there and provide the correct path, e.g.:

export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64

• also update your PATH variable to point to your JDK:

export PATH=$PATH:$JAVA_HOME/bin

• check your variables by typing:

echo $PATH
echo $JAVA_HOME

• you can store the above variables permanently by just adding the above commands to /etc/profile.d/myenvvars.sh
(or similar name):

export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64
export PATH=$PATH:$JAVA_HOME/bin

• install Maven:

wget https://ftp.fau.de/apache/maven/maven-3/3.6.3/binaries/apache-maven-3.6.3-
→˓bin.tar.gz -P /your/path/to/
tar xzvf /your/path/to/apache-maven-3.6.3-bin.tar.gz -C /your/path/to/
export PATH=/your/path/to/apache-maven-3.6.3/bin:$PATH

1.4 Troubleshooting

mvn: not found

• if the install script keeps saying this although you are sure maven is installed on your device, check if your
PATH variable (echo $PATH) points to maven’s bin directory. Alternatively, you can add the absolute path to
your maven installation to the script: export PATH=”$PATH:your/mvn/path”

Cannot find xml2-config
ERROR: configuration failed for package ‘XML’

• install libxml2-dev, e.g. when on Ubuntu apt install libxml2-dev or similar (the available package name de-
pends on your Ubuntu distribution, which you can find out with the help of this tutorial https://itsfoss.com/
unable-to-locate-package-error-ubuntu/)

FileNotFoundError: [Errno 2] No such file or directory: 'curl-config': 'curl-config

• this error comes from pycurl - install libcurl4-openssl-dev and libssl-dev packages, e.g. when on Ubuntu apt in-
stall libcurl4-openssl-dev libssl-dev or similar (the available package name depends on your Ubuntu distribution,
which you can find out with the help of this tutorial https://itsfoss.com/unable-to-locate-package-error-ubuntu/)

1.4. Troubleshooting 3

https://itsfoss.com/unable-to-locate-package-error-ubuntu/
https://itsfoss.com/unable-to-locate-package-error-ubuntu/
https://itsfoss.com/unable-to-locate-package-error-ubuntu/

Comprior Documentation

WARNING: Failed to load implementation from: com.github.fommil.netlib.Native***
→˓(SystemBLAS, RefBLAS, SystemLAPACK, RefLAPACK, SystemARPACK, RefARPACK)

• this can happen when running on Ubuntu and is related packages internally used by WEKA

• install libgfortran-6-dev package, e.g. when on Ubuntu apt-get install libgfortran-6-dev or similar (the available
package name depends on your Ubuntu distribution, which you can find out with the help of this tutorial https:
//itsfoss.com/unable-to-locate-package-error-ubuntu/)

[ERROR] No compiler is provided in this environment. Perhaps you are running on a JRE
→˓rather than a JDK?

• you either do not have a JDK installed or your variables point to the wrong location. Follow Installing Java JDK
and Maven on Ubuntu for installing JDK and setting the environment variables correctly.

Configuration failed because libxml-2.0 was not found. Try installing:

* deb: libxml2-dev (Debian, Ubuntu, etc)

* rpm: libxml2-devel (Fedora, CentOS, RHEL)

* csw: libxml2_dev (Solaris)
If libxml-2.0 is already installed, check that 'pkg-config' is in your
PATH and PKG_CONFIG_PATH contains a libxml-2.0.pc file. If pkg-config
is unavailable you can set INCLUDE_DIR and LIB_DIR manually via:
R CMD INSTALL --configure-vars='INCLUDE_DIR=... LIB_DIR=...'

• lixml-2.0 is not installed. Follow the recommendations stated there and install it, e.g. by apt-get install libxml2-
dev or similar (the available package name depends on your Ubuntu distribution, which you can find out with
the help of this tutorial https://itsfoss.com/unable-to-locate-package-error-ubuntu/)

Configuration failed because openssl was not found. Try installing:

* deb: libssl-dev (Debian, Ubuntu, etc)

* rpm: openssl-devel (Fedora, CentOS, RHEL)

* csw: libssl_dev (Solaris)

* brew: openssl@1.1 (Mac OSX)
If openssl is already installed, check that 'pkg-config' is in your
PATH and PKG_CONFIG_PATH contains a openssl.pc file. If pkg-config
is unavailable you can set INCLUDE_DIR and LIB_DIR manually via:
R CMD INSTALL --configure-vars='INCLUDE_DIR=... LIB_DIR=...'

• openssl is not installed. Follow the recommendations stated there and install it, e.g. by apt-get install libssl-dev
or similar (the available package name depends on your Ubuntu distribution, which you can find out with the
help of this tutorial https://itsfoss.com/unable-to-locate-package-error-ubuntu/)

** package ‘xml2’ successfully unpacked and MD5 sums checked
Found pkg-config cflags and libs!
Using PKG_CFLAGS=-I/usr/include/libxml2
Using PKG_LIBS=-lxml2 -lz -llzma -licui18n -licuuc -licudata -lm -ldl

** libs
g++ -I/usr/share/R/include -DNDEBUG -I../inst/include -I/usr/include/libxml2 -DUCHAR_
→˓TYPE=wchar_t -fvisibility=hidden -fpic -g -O2 -fstack-protector-strong -Wformat
→˓-Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -g -c connection.cpp -o
→˓connection.o
In file included from /usr/include/unicode/uenum.h:23:0,

from /usr/include/unicode/ucnv.h:53,
from /usr/include/libxml2/libxml/encoding.h:31,
from /usr/include/libxml2/libxml/parser.h:810,
from /usr/include/libxml2/libxml/globals.h:18,
from /usr/include/libxml2/libxml/threads.h:35,

(continues on next page)

4 Chapter 1. Installation and Usage

https://waikato.github.io/weka-wiki/faqs/ubuntu_1804_blas_warning/
https://itsfoss.com/unable-to-locate-package-error-ubuntu/
https://itsfoss.com/unable-to-locate-package-error-ubuntu/
https://itsfoss.com/unable-to-locate-package-error-ubuntu/
https://itsfoss.com/unable-to-locate-package-error-ubuntu/

Comprior Documentation

(continued from previous page)

from /usr/include/libxml2/libxml/xmlmemory.h:218,
from /usr/include/libxml2/libxml/tree.h:1307,
from xml2_utils.h:5,
from connection.cpp:3:

/usr/include/unicode/localpointer.h:224:34: error: expected ‘,’ or ‘...’ before ‘&&’
→˓token
LocalPointer(LocalPointer<T> &&src) U_NOEXCEPT : LocalPointerBase<T>(src.ptr) {
...
make: *** [connection.o] Error 1
ERROR: compilation failed for package ‘xml2’

* removing ‘/usr/local/lib/R/site-library/xml2’

The downloaded source packages are in
‘/tmp/Rtmpashma8/downloaded_packages’

Warning message:
In install.packages("xml2") :
installation of package ‘xml2’ had non-zero exit status

• There seems to be a different compiler required than what is currently provided in your ~/.R/Makevars file. Add
CXX=g++ -std=c++11 (or whatever is stated at the very beginning of the error) to your ~/.R/Makevars file.
The problem and solution are also described here: https://github.com/r-lib/xml2/issues/294

Error: package or namespace load failed for ‘glmnet’ in dyn.load(file, DLLpath =
→˓DLLpath, ...):
unable to load shared object '/usr/local/lib/R/site-library/00LOCK-glmnet/00new/
→˓glmnet/libs/glmnet.so':
/usr/lib/x86_64-linux-gnu/libgfortran.so.5: version `GFORTRAN_1.0' not found
→˓(required by /usr/local/lib/R/site-library/00LOCK-glmnet/00new/glmnet/libs/glmnet.
→˓so)

• the R package glmnet (used by xtune package) needs a Fortran interpreter. If you have not installed it already,
install it. If you have installed it already, adapt ~/.R/Makevars and add CC=gcc

ImportError: pycurl: libcurl link-time ssl backends (secure-transport, openssl) do
→˓not include compile-time ssl backend (none/other)

• Looks like something went wrong with pycurl/openssl. Try this:

pip3 uninstall pycurl
pip3 install --compile --install-option="--with-openssl" pycurl

– if it still fails, try this as well:

brew reinstall openssl

configparser.DuplicateOptionError: While reading from '../../configs/config.ini'
→˓[line 17]: option 'rscriptlocation' in section 'R' already exists

• If this error occurs, then you probably have adapted config.ini before installing Comprior, e.g. by removing or adding a line.

– If you are executing from source:You can now either update config.ini directly or (more sustainable
for the future) you can adapt install.sh and install_macos.sh scripts as they replace the values of
parameters RscriptLocation and JavaLocation and homePath based on their line numbers. Update the
script to contain the correct line number and then rerun the installation script.

1.4. Troubleshooting 5

https://github.com/r-lib/xml2/issues/294

Comprior Documentation

– If you are executing in a Docker container: You need to adapt the Dockerfile and update the line
numbers that are used to replace parameters homePath, RscriptLocation, JavaLocation, and code.
Check if these parameters are still located in the correct line of config.ini. If not, update the line
numbers given in the sed command that is executed there.

FileNotFoundError: [Errno 2] No such file or directory: '/my abs path/Comprior/data/
→˓input/TCGA-SCANB/BRCA_TP_expressions_normalized.csv'

• If this error occurs when executing Comprior in a Docker container, you likely specified the absolute path to
your input file in the config file. Make sure that you provide a path relative from your input directory: input =
${General:inputDir}TCGA-SCANB/BRCA_TP_expressions_normalized.csv. Docker containers have their own
file structure, and the mounted directory you provide when running Comprior in a Docker container will be
resolved to /home/app/data/ automatically. As such, if you provide an absolute path to your input files, Comprior
will not be able to find it as this path does not exist (but instead it will exist at: /home/app/data/input/TCGA-
SCANB/BRCA_TP_expressions_normalized.csv).

6 Chapter 1. Installation and Usage

CHAPTER 2

Example Use Cases

2.1 Breast Cancer

The prepared breast cancer use case tests selected feature selection approaches (both prior knowledge and traditional)
to retrieve genes that best separate the samples into their PAM50 breast cancer subtypes (basal, normal-like, luminal
A, luminal B, HER2). The repository contains two breast cancer data sets that are ready for execution with Comprior
(links to R-based preprocessing scripts will be added later and are also available upon request):

• TCGA.zip: normalized BRCA samples (no normals) from TCGA including metadata. Contains 1090 samples
for 20950 genes. This data must be downloaded by following the instructions in TCGA_README.txt.

• SCANB_labeled.csv.zip: labeled data set for cross-validation. Contains 378 SCANB samples for 15011 genes
from the training cohort (GSE81538)

• unzip the files:

cd data/input/TCGA-SCANB
unzip SCANB_labeled.csv.zip
unzip TCGA.zip

• make sure the file paths in Comprior/code/configs/TCGA_SCANBconfig.ini are still correct

– check input and metadata parameters in Dataset section and crossEvaluationData parameter in Eval-
uation section)

– the resolved inputDir parameter is provided in the main config.ini file and should point to your local
Comprior folder

– adapt further configuration parameter as you like, e.g. add “Random” to traditional_methods

2.1.1 Execution via Source Installation

• make sure you installed Comprior (see Install and Run Comprior from Source) beforehand and homePath,
RscriptLocation, and JavaLocation parameters are correctly set in the main config.ini file

7

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81538

Comprior Documentation

• navigate to code/Python/comprior (assuming you are still located at Comprior/data/input/TCGA-SCANB):

cd ../../../code/Python/comprior

• start Comprior and provide the config file for this use case:

python3 pipeline.py --config ../../configs/TCGA_SCANBconfig.ini

• Check your results in data/results/TCGA-SCANB_UseCase - see Folder Structure - Where to find what Files (In-
and Output) for an explanation on the folder structure.

2.1.2 Execution via Docker Image

• make sure you have built the docker container as described in Run Comprior in a Docker Container

• copy the folder containing the input files (BRCA_TP_expressions_normalized.csv, BRCA_TP_metadata.csv, and
SCANB_labeled.csv) to Comprior/comprior_docker/input (assuming you are in Comprior’s main directory):

cp -r data/input/TCGA-SCANB comprior_docker/input

• copy the config file TCGA_SCANBconfig.ini to Comprior/comprior_docker:

cp code/configs/TCGA_SCANBconfig.ini comprior_docker

• make sure the input, metadata, and crossEvaluationData parameters point to the right location. If your data is
located within a subfolder of the Comprior/comprior_docker/input directory, add this to the parameter. Do not
provide absolute paths and keep the ${General:inputDir}, as it is internally resolved to point towards the input
directory:

[Dataset]
input = ${General:inputDir}TCGA-SCANB/BRCA_TP_expressions_normalized.csv
metadata = ${General:inputDir}TCGA-SCANB/BRCA_TP_metadata.csv

[Evaluation]
crossEvaluationData = ${General:inputDir}TCGA-SCANB/SCANB_labeled.csv

• run the Docker container as root and provide the absolute path to Comprior/comprior_docker as mount directory
(only change /your/absolute/path/to/ AND retype the double hyphen for –config; for some reason the config
parameter will not be recognized if the statement is just copied from here):

sudo docker run -it --rm -v /your/absolute/path/to/Comprior/comprior_docker:/home/
→˓app/data comprior --config /home/app/data/TCGA_SCANBconfig.ini

• Check your results in Comprior/comprior_docker/results/TCGA-SCANB_UseCase - see Folder Structure -
Where to find what Files (In- and Output) for an explanation on the folder structure and Output Generated
by Comprior for a more detailed description on the generated plots.

2.2 Glioma

The prepared glioma use case tests selected feature selection approaches (both prior knowledge and traditional) to
retrieve genes that best separate the samples into their glioma subtypes astrocytoma, glioblastoma, and oligoden-
droglioma. The repository contains two glioma data sets that are ready for execution with Comprior(links to R-based
preprocessing scripts will be added later and are also available upon request):

8 Chapter 2. Example Use Cases

Comprior Documentation

• TCGA.zip: normalized GBM and LGG samples (no normals) from TCGA including metadata. Contains 496
samples for 19301 genes.

• REMBRANDT_labeled.csv.zip: labeled data set for cross-validation. Contains 436 samples for 31442 probes
from the REMBRANDT study (microarray data, GSE108474)

• unzip the files:

cd data/input/GBM-LGG
unzip REMBRANDT_labeled.csv.zip
unzip TCGA.zip

• make sure the file paths in Comprior/code/configs/GBMLGGconfig.ini are still correct

– check input and metadata parameters in Dataset section and crossEvaluationData parameter in Eval-
uation section)

– the resolved inputDir parameter is provided in the main config.ini file and should point to your local
Comprior folder

– adapt further configuration parameter as you like, e.g. add “Random” to traditional_methods

2.2.1 Execution via Source Installation

• make sure you installed Comprior (see Install and Run Comprior from Source) beforehand and homePath,
RscriptLocation, and JavaLocation parameters are correctly set in the main config.ini file

• navigate to Comprior/code/Python/comprior*(assuming you are still located at *Comprior/data/input/GBM-
LGG):

cd ../../../code/Python/comprior

• start Comprior and provide the config file for this use case:

python3 pipeline.py --config ../../configs/GBMLGGconfig.ini

• Check your results in data/results/GBMLGG_UseCase - see Folder Structure - Where to find what Files (In- and
Output) for an explanation on the folder structure.

2.2.2 Execution via Docker Image

• make sure you have built the docker container as described in Run Comprior in a Docker Container

• copy the folder containing the input files (GBM-LGG_TP_expressions_normalized.csv, GBM-
LGG_TP_metadata.csv, and REMBRANDT_labeled.csv) to Comprior/comprior_docker/input (assuming
you are in Comprior’s main directory):

cp -r data/input/GBM-LGG comprior_docker/input

• copy the config file GBMLGGconfig.ini to Comprior/comprior_docker:

cp code/configs/GBMLGGconfig.ini comprior_docker

• make sure the input, metadata, and crossEvaluationData parameters point to the right location. If your data is
located within a subfolder of the Comprior/comprior_docker/input directory, add this to the parameter. Do not
provide absolute paths and keep the ${General:inputDir}, as it is internally resolved to point towards the input
directory:

2.2. Glioma 9

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE108474

Comprior Documentation

[Dataset]
input = ${General:inputDir}GBM-LGG/GBM-LGG_TP_expressions_normalized.csv
metadata = ${General:inputDir}GBM-LGG/GBM-LGG_TP_metadata.csv

[Evaluation]
crossEvaluationData = ${General:inputDir}GBM-LGG/SCANB_labeled.csv

• run the Docker container as root and provide the absolute path to Comprior/comprior_docker as mount directory
(only change /your/absolute/path/to/ AND retype the double hyphen for –config; for some reason the config
parameter will not be recognized if the statement is just copied from here):

sudo docker run -it --rm -v /your/absolute/path/to/Comprior/comprior_docker:/home/
→˓app/data comprior --config /home/app/data/GBMLGGconfig.ini

• Check your results in Comprior/comprior_docker/results/GBMLGG_UseCase - see Folder Structure - Where to
find what Files (In- and Output) for an explanation on the folder structure and Output Generated by Comprior
for more a more detailed explanation on the generated plots.

2.3 Output Generated by Comprior

2.3.1 Detailed Processing Outputs

• Comprior.log contains more detailed outputs compared to the command line output. If you find that there is a
figure or other output missing that you expected to be there, look at the log file as it is likely that a corresponding
warning was posted there (e.g. Comprior does not automatically stop when a knowledge base does not return
any results but just continues with the empty set of prior knowledge).

2.3.2 Plots on Datasets

If preanalysis_plots (Evaluation section) was provided with one or more keywords in your config file, Com-
prior creates corresponding plots for the input data sets (both the main and - if available - the labeled one for
cross-validation). Colors for class labels are the same across all plots created. You can find the plots in Com-
prior/data/results/YourExperimentName/preanalysis

2.3.2.1 MDS plot

• keyword: mds

• multidimensional scaling plot showing dis-/similarities between samples

• output file name: mds_InputDatasetName.pdf

2.3.2.2 Density Plot

• keyword: density

• shows the average density distribution of expression levels per class label

• output file name: density_InputDatasetName.pdf

10 Chapter 2. Example Use Cases

Comprior Documentation

Fig. 1: Multidimensional scaling (MDS) plot for the input data set (TCGA) of the BRCA use case, one line per class
label.

2.3. Output Generated by Comprior 11

Comprior Documentation

Fig. 2: Density plot for the input data set (TCGA) of the BRCA use case, one line per class label.

12 Chapter 2. Example Use Cases

Comprior Documentation

2.3.2.3 Box Plot

• keyword: box

• shows the expression levels with one box per class label

• output file name: distribution_InputDatasetName.pdf

Fig. 3: Box plot for the input data set (TCGA) of the BRCA use case, one box per class label.

2.3.3 Knowledge Base Coverage

If evaluateKBcoverage (Evaluation section) is set to true in your config file, Comprior examines how much the search
terms provided in the config file are covered by the knowledge bases that are used in this experiment. For example, if
you use Postfilter_Variance_DisGeNET, then Comprior will check the coverage of DisGeNET only. You can find the
plots in Comprior/data/results/YourExperimentName/preanalysis.

If a search term has more than 15 signs, Comprior will map the search terms to a shorter ID and
use this instead for the plots. The mapping from search term to ID is then provided in Com-
prior/data/results/YourExperimentName/preanalysis/searchterm_IDs.txt.

2.3.3.1 Gene Coverage Plots

• created for every knowledge base (see Gene Association Score Computation from Network Information for how
an individual gene association score is computed for interaction knowledge bases that only retrieve network
information)

• file name: KnowledgeBaseName_GeneCoverage.pdf (source file: KnowledgeBaseName_GeneStats.csv)

2.3. Output Generated by Comprior 13

Comprior Documentation

• box plot shows the distribution of association scores (left-hand y axis) that are returned for a given search term,
the underlying bar plot shows how many genes (right-hand y axis) were returned per search term (attention:
gene sets are not disjunct, i.e. results for search terms can show a high overlap if the search terms are similar)

Fig. 4: Prior knowledge coverage in OpenTargets for the search terms used in the GBM-LGG use case. Boxes show
the association scores returned for the genes related to the search term, bars showing the overall number of genes
returned for a search term.

2.3.3.2 Pathway Coverage Plots

• created only for knowledge bases providing network information, e.g. KEGG or PathwayCommons

• file name: KnowledgeBaseName_PathwayCoverage.pdf (source file: KnowledgeBaseName_PathwayStats.csv)

• box plot shows the distribution of network sizes (i.e., number of member genes, left-hand y axis) that are returned
for a given search term, the underlying bar plot shows how many networks (right-hand y axis) were returned per
search term (attention: pathway sets are not disjunct, i.e. results for search terms can show a high overlap if the
search terms are similar)

2.3.4 Feature Rankings

Every feature selection approach creates a corresponding feature ranking of all the input features. The corresponding
rankings (ApproachName.csv) are located at Comprior/data/results/YourExperimentName/GeneRankings/ and con-
tains an ordered feature list, thus the top k features in the list will be used for classification later on. Based on what
keywords are provided for the metrics (Rankings section) parameter in your config file, Comprior creates correspond-
ing plots in Comprior/data/results/YourExperimentName/evaluation/rankings and uses a consistent color scheme.

2.3.4.1 Ranking Overlaps

• file name: metrics/geneSignatureOverlaps.pdf

• <= 3 feature rankings: Venn diagram

• > 3 feature rankings: Upset plot

• shows overlaps of the top k feature sets for all feature selection approaches

14 Chapter 2. Example Use Cases

Comprior Documentation

Fig. 5: Prior knowledge coverage in PathwayCommons for the search terms used in the GBM-LGG use case. Boxes
show the pathway sizes (=number of genes) of the retrieved pathways, bars showing the overall number of pathways
returned for a search term.

• hint: NetworkActivity and CorgsNetworkActivity will not have any overlap with other approaches, as they have
pathways as features and not genes as the others

2.3.5 Feature Annotations and Enrichments

Comprior uses Enrichr to a) annotate the top k features and b) enrich these feature sets with terms. You can se-
lect the library to be used for that by providing its corresponding name as stated by Enrichr (see here) in the
geneSetLibrary parameter (Enrichr section) in your config file. The plots and their source files are located at Com-
prior/data/results/YourExperimentName/evaluation/rankings/.

2.3.5.1 Annotation Overlaps

• file name: annotation/overlaps_annotatedGenes.pdf (based on source files with annotations:
topk_ApproachName_annotatedGenes.csv)

• <= 3 approaches used: Venn diagram, > 3 approaches used: Upset plot

• shows overlaps of annotated terms for the top k annotated terms per feature set (=how many annotations feature
sets share)

• for example, two feature sets might not actually have an overlap in their features, but some features might be
annotated with the same terms

2.3.5.2 Enrichment Overlaps

• file name: annotation/overlaps_enrichedTerms.pdf (based on source files with annotations:
topk_ApproachName_enrichedTerms.csv)

• <= 3 approaches used: Venn diagram, > 3 approaches used: Upset plot

• shows overlaps of the top k enriched terms per feature set (=how much the enriched terms identified for the
feature sets overlap)

2.3. Output Generated by Comprior 15

https://maayanlab.cloud/Enrichr/#stats

Comprior Documentation

Fig. 6: Feature set overlaps for the top 20 features selected by the approaches used in the BRCA use case.

16 Chapter 2. Example Use Cases

Comprior Documentation

Fig. 7: Overlaps of top 20 annotations made to the feature sets (top 20) selected by the approaches used in the BRCA
use case.

2.3. Output Generated by Comprior 17

Comprior Documentation

• for example, two feature sets might not actually have an overlap in their features, but in both feature sets the
same terms are enriched

Fig. 8: Overlaps of top 20 enrichments for feature sets (top 20) selected by the approaches used in the BRCA use case.

2.3.6 Classification Performance

Comprior uses the top k features from every approach and classifies the original data set (and, if provided, the
second labeled data set) with these features according to the parameters (which classifiers to use, k-fold cross-
validation, which metrics to apply, etc.) specified in the config file. For every metric selected, Comprior cre-
ates line plots that show the average classification metric, e.g. accuracy, for all feature selection approaches. The
plots and their source files for metrics (of type ApproachName_MetricName.csv) on the original data set are lo-
cated at Comprior/data/results/YourExperimentName/evaluation/classification/metrics. The plots and their source
files for metrics (of type ApproachName_MetricName.csv) on the cross-validation data set are located at Com-
prior/data/results/YourExperimentName/evaluation/classification/crossEvaluation/classification. The colors assigned
to the approaches are consistent across all plots generated by Comprior.

2.3.7 Feature Selection Runtimes

Comprior also logs runtimes of feature selection approaches (though no plots are created currently). Runtime statistics
are located at Comprior/data/results/YourExperimentName/timeLogs, with one file per feature selection approach. The
last line of each file always contains the overall runtime for feature selection. The remaining lines trace runtimes of
single parts of the feature selection process, e.g. of prior knowledge retrieval or a traditional feature selection strategy.

18 Chapter 2. Example Use Cases

Comprior Documentation

Fig. 9: Average F1 score for increasing feature set sizes selected by the approaches used in the GBM-LGG use case
(original TCGA data set was classified).

Fig. 10: Average F1 score for increasing feature set sizes selected by the approaches used in the BRCA use case
(labeled SCANB data set was classified, features were originally selected on the TCGA data set).

2.3. Output Generated by Comprior 19

Comprior Documentation

20 Chapter 2. Example Use Cases

CHAPTER 3

Input Data Sets

3.1 Gene Expression Data

The gene expression dataset must be provided in table format. Genes/features can be located either in columns or
rows, however make sure to set the genesInColumns parameter accordingly in your config file. Data separators can
be chosen arbitrarily, however make sure to set the dataSeparator parameter accordingly. Make sure to always leave
the first column of the header empty as shown here:

,ERBB2,TP53,DVL1,BRCA1,BRCA2
Sample1,12.02,4.12,11.25,9.87,10.02
Sample2,10.32,4.76,10.73,10.94,8.72

3.2 Metadata

Metadata must always be provided for an input data set. It must have the same separator as the gene expression
data (pay attention: here you do not have to leave a blank column). Whether samples or metadata type is located
in the columns can be specified with the metadataIDsInColumns parameter. Specify the class labels by selecting a
corresponding metadata type with the classLabelName parameter (e.g. if we want to have subtypes as class labels,
specify subtype). If the metadata provides further information on the disease that you want to provide as search terms
for the knowledge bases, specify it with the diseaseLabelName parameter (e.g. by setting it to primary_diagnosis).

Sample1,Sample2
project_id,BRCA,BRCA
subtype,LumA,LumB
gender,female,female
primary_diagnosis,”Infiltrating duct carcinoma, NOS”,”Lobular carcinoma, NOS”

21

Comprior Documentation

3.3 Data for Cross-Validation

Preprocessing for data sets for cross-validation is currently not supported (except for identifier mapping), so the data
must be provided with a) genes in columns and b) the corresponding class labels. Make sure to set the name of
the class label column in the config file with the crossEvaluationClassLabel parameter (in the example, it would be
diseaseCode).

diseaseCode,SampleName,ERBB2,TP53,DVL1,BRCA1,BRCA2
LumA,Sample1,12.02,4.12,11.25,9.87,10.02
LumB,Sample2,10.32,4.76,10.73,10.94,8.72

22 Chapter 3. Input Data Sets

CHAPTER 4

Configuration Parameters

Config parameters are grouped into sections and needed by the framework to function properly. In the following, we
provide brief explanations for the existing parameters and their values

4.1 General

• name - framework name, mainly used for logging

• numCores (int) - number of available cores that can be used for parallel running of gene selectors

• homePath - contains the path to the framework

• inputDir - the path to the directory where all input data is located

• intermediateDir - where to put intermediate results (recommended not to changed)

• externalKbDir - where to put intermediate query results from knowledge bases (recommended not to changed)

• resultsDir - where to put the final results (recommended not to changed)

• preprocessing - where to put preprocessed data sets (recommended not to changed)

• crossVal_preprocessing - where to put preprocessed data sets for cross-validation (recommended not to
changed)

• outputDir_name - name of the overall output directory. If that directory already exists, Comprior adds num-
bering.

• log_filename - name of the log file to which processing information, warnings, etc. are written

4.2 R

• code - path to R source files (recommended not to changed)

• RscriptLocation - path to Rscript

23

Comprior Documentation

4.3 Java

• code - path to Java jar files (recommended not to changed)

• JavaLocation - path to Java

4.4 Dataset

• input - path to expression dataset

• metadata - path to metadata file for expression dataset

• classLabelName - specify the metadata column name of the label to use for classification (=keywords that will
also be used for search in knowledge bases)

• alternativeSearchTerms - specify alternative search terms that will be used by knowledge bases. Separate
search terms by spaces and replace spaces within a search term with _, e.g. “Breast Cancer Kidney_Cancer”
will be parsed to the following search terms:”Breast”, “Cancer”, “Kidney Cancer”

• genesInColumns (true/false) - specify if genes are in the columns so that the data can be transformed automat-
ically

• metadataIDsInColumns (true/false) - specify if sample IDs in the metadata file are in the columns

• dataSeparator (sep) - specify file separator (must be the same for metadata and gene expression), e.g. ,, t

• currentGeneIDFormat - specify the current gene ID format with g:Convert IDs, e.g. ENTREZGENE, ENSG,
AFFY_HG_U133_PLUS_2, HGNC (see https://biit.cs.ut.ee/gprofiler/convert)

• finalGeneIDFormat - specify the gene ID format with g:Convert IDs you want to have in your gene rankings,
e.g. HGNC (see https://biit.cs.ut.ee/gprofiler/convert)

4.5 Preprocessing

• filterMissingsInGenes (true/false) - filter genes that have a higher percentage of missing fields than specified
in treshold parameter

• filterMissingsInSamples (true/false) - filter samples that have a higher percentage of missing fields than speci-
fied in the treshold parameter

• threshold ([0..100]) - percentage used for filtering

4.6 Gene Selection - General

• outputDirectory - where the final gene rankings are stored (recommended not to changed)

• selectKgenes (int) - maximum number of genes to select (to reduce runtimes). Must be >= topKmax param in
Evaluation.

4.7 Gene Selection - Methods

• traditional_methods - select multiple traditional gene selection methods (separated by spaces):

24 Chapter 4. Configuration Parameters

https://biit.cs.ut.ee/gprofiler/convert
https://biit.cs.ut.ee/gprofiler/convert

Comprior Documentation

– filter: Random, InfoGain, ReliefF, VB-FS (R-based variance selection), ANOVA, mRMR, Variance (Python-
based variance selection)

– wrapper: SVMpRFE (SVM-RFE with polykernel), x-SFS, x-RFE (x = add the desired classifier: K-nearest
Neighbor (KNN3, KNN5), Naive Bayes (NB), Linear Regression (LR), Support Vector Machines with
linear kernel (SVMl))

– embedded: RandomForest, Lasso

• modifying_methods - combine knowledge base with traditional approach from above. Currently implemented:

– Postfilter_trad_kb: Filter the features selected by traditional approach (trad) by the features/genes retrieved
from knowledge base (kb)

– Prefilter_trad_kb: Filter the input features by the genes retrieved from the knowledge base (kb) first and
forward this reduced input set to the traditional approach (trad) for feature selection

– Extension_trad_kb: Extends features selected by traditional approach (trad) by features/genes retrieved
from knowledge base (kb). Traditionally selected features and external features/genes make up 50% of
top k features, respectively (so if topKmax param is 2, 1 feature from traditional approach, 1 feature from
external will be selected)

– KBonly_kb: Only use the scores from the knowledge base to rank features, setting a default score of
0.000001.

• combining_methods - select combining methods to apply. Combining methods should combine a traditional
approach (trad) with a knowledge base (kb), the prefix indicates the actual combining strategy. Currently im-
plemented:

– Weighted_trad_kb: weights the score from traditional approach trad by the score retrieved from knowledge
base kb)

– LassoPenalty_kb: includes external knowledge via Lasso penalty as described by Zeng et al.: “Incorporat-
ing prior knowledge into regularized regression”

• network_methods - select network approaches to apply. Currently implemented:

– NetworkActivity_kb: retrieves pathway from knowledge base kb, ranks them via average of (ANOVA
of gene expression value/sample class) for every gene in pathway, and creates an activity score as new
feature value for the pathway for every sample (= average of (gene expression value x variance x average
of (Pearson correlation with network neighbors))) for all genes in the pathway)

– CorgsNetworkActivity_kb: retrieves pathway from knowledge base kb, ranks them via average of (ANOVA
of gene expression value/sample class) for every gene in pathway, and creates an activity score as new
feature value for the pathway for every sample as described by Lee et al.: “Inferring Pathway Activity
toward Precise Disease Classification”

4.8 Evaluation

• topKmin (int) - minimum number of features to select

• topKmax (int) - maximum number of features to select

• kfold (int) - k parameter for k-fold cross-validation during classification

• results - where to put the results (recommended not to changed)

• reducedDataset - where to put the reduced data sets (with k features) (recommended not to changed)

• preanalysis - where to put plots created during preanalysis

• preanalysis_plots - create plots on input data before any analysis. Currently implemented:

4.8. Evaluation 25

https://doi.org/10.1093/bioinformatics/btaa776
https://doi.org/10.1093/bioinformatics/btaa776
https://doi.org/10.1371/journal.pcbi.1000217
https://doi.org/10.1371/journal.pcbi.1000217

Comprior Documentation

– density: density plot showing the average density distribution of expression values (per class)

– box: box plot showing the average gene expression (per class)

– mds: multidimensional scaling plot showing dis-/similarities between samples

• evaluateKBcoverage (true/false) - create diagrams showing coverage of search terms in the used knowledge
bases

• robustnessResults - where to put the cross-validation results (recommended not to changed)

• enableCrossEvaluation (true/false) - whether to use a second data set for cross-validation

• crossEvaluationData - path to second data set for cross-validation (must have genes in columns and be already
labeled)

• crossEvaluationClassLabel - column name of second data set for cross-validation containing the class label

• crossEvaluationGeneIDFormat - current g:Convert gene ID format of the second data set for cross-validation
(see https://biit.cs.ut.ee/gprofiler/convert)

• enableClassification (true/false) - use classification algorithms for evaluation

• enablePrediction (true/false) - use predictive algorithms for evaluation (functionality not implemented yet)

4.9 Rankings

• results - where to put the actual rankings (recommended not to change)

• metricsDir - where to put the metric results (recommended not to change)

• annotationsDir - where to put the annotation information(recommended not to change)

• metrics - specify which evaluation metrics to apply/compare on feature rankings. Currently provided:

– top_k_overlap: overlap of top k features of rankings

– kendall_w: Kendall’s W ranking comparison

– fleiss_kappa: Fleiss’ Kappa ranking comparison

– annotation_overlap: shows gene annotation overlap in rankings (e.g. which annotated genes where found
jointly by all rankings)

– enrichment_overlap: shows enrichment term overlap of rankings (e.g. which enrichment terms where
found jointly by all rankings)

– annotation_percentage: compares average p

– average_foldchange: compares average fold change of genes in rankings

4.10 Classification

• classifiers - specify classifiers to use for classsification task. Currently provided:

– KNN(int): K-nearest Neighbor, e.g. KNN3

– NB: Naive Bayes

– LR: Linear Regression

– SMO: Support Vector Machines

26 Chapter 4. Configuration Parameters

Comprior Documentation

– RF: Random Forest

• metrics - specify which evaluation metrics to apply on classification results. Currently provided:

– accuracy

– sensitivity

– specificity

– F1

– kappa

– AUROC

– precision

– matthewcoef : Matthews Correlation Coefficient

• results - where to put the classification results (recommended not to change)

• crossEvaluationDir - where to put classification results from cross-validation (recommended not to change)

• metricsDir - where to put the evaluation results (recommended not to change)

4.11 Prediction (not implemented yet)

• predictors - specify predictors to use for prediction task (still under construction)

• metrics - specify which evaluation metrics to apply on prediction results (still under construction)

• results - where to put the classification results (recommended not to change)

• crossEvaluationDir - where to put classification results from cross-validation (recommended not to change)

• metricsDir - where to put the evaluation results (recommended not to change)

4.12 Enrichr

• webservice_uri - URL of Enrichr web service (recommended not to change)

• outputDir - output directory for intermediate results from web service (recommended not to change)

• geneSetLibrary - gene set library to use for annotation/enrichment. Choose any available at https://maayanlab.
cloud/Enrichr/#stats

4.13 OpenTargets

• outputDir - output directory for intermediate results from web service (recommended not to change)

4.14 KEGG

• outputDir - output directory for intermediate results from web service (recommended not to change)

• maxNumPathways (int) - specify the maximum number of pathways to retrieve per search term (for perfor-
mance reasons)

4.11. Prediction (not implemented yet) 27

https://maayanlab.cloud/Enrichr/#stats
https://maayanlab.cloud/Enrichr/#stats

Comprior Documentation

4.15 UMLS (needed to transform search terms into CUIs for using
DisGeNET)

• login_uri - URL of login web service (recommended not to change)

• loginservice_uri - URL of login web service (recommended not to change)

• auth_endpoint - authentication endpoint for API (recommended not to change)

• apikey - API key for accessing UMLS (recommended not to change unless own API key available, register for
free at UMLS to create an own key)

• webservice_uri - URL of UMLS web service (recommended not to change)

4.16 DisGeNET

• associationScore (score/gene_dsi/gene_dpi) - which association score to use for knowledge retrieval: score
(overall score), gene_dsi (disease specificity), gene_dpi (disease pleiotropy)

• webservice_url - URL of DisGeNET web service (recommended not to change)

• outputDir - output directory for intermediate results from web service (recommended not to change)

• apikey - API key for accessing DisGeNET (recommended not to change unless own API key is available,
register at DisGeNET to create your own key)

4.17 PathwayCommons

• webservice_url - URL of PathwayCommons web service (recommended not to change)

• outputDir - output directory for intermediate results from web service (recommended not to change)

• maxNumPathways (int) - specify the maximum number of pathways to retrieve per search term (for perfor-
mance reasons)

4.18 BiomaRt

• outputDir - output directory for intermediate results from web service (recommended not to change)

4.19 gConvert

• webservice_url - URL of g:Convert web service (recommended not to change)

• outputDir - output directory for intermediate results from web service (recommended not to change)

28 Chapter 4. Configuration Parameters

https://uts.nlm.nih.gov/uts/signup-login
https://www.disgenet.org/signup/

CHAPTER 5

Folder Structure - Where to find what Files (In- and Output)

Unless the paths are not adapted/overwritten in config.ini, Comprior builds up the following folder infrastructure
during processing:

data
input

dataset
example

intermediate
dataset
crossvalidation
externalKnowledge

results
XXX

timeLogs
preanalysis
geneRankings
evaluation

rankings
annotation
metrics

reducedData
classification

metrics
crossEvaluation

reducedData
classification

5.1 input/

• dataset/: put your input dataset here

• example/: folder with example files for trying out Comprior

29

Comprior Documentation

5.2 intermediate/

• dataset/: preprocessed input data (currently metadata added to one file)

• crossvalidation/: contains preprocessed dataset for cross-validation (e.g. mapped to the right identifier or
pathway features)

• externalKnowledge/: one sub-folder per knowledge base that is queried with query results

5.3 results/

• XXX/: output folder for the current run, whose name is specified by the outputDir_name parameter in config.ini
(if there already exists a folder with such a name, Comprior adds a number to the name)

– timeLogs/: one file for every selected approach, containing logs with time durations of different selection
activities, e.g. external knowledge retrieval or statistical feature selection

– preanalysis/: contains - if selected via preanalysis_plots and evaluateKBcoverage parameters in config.ini
- plots on data set characteristics and knowledge base coverage

– geneRankings/: contains the actual feature rankings, one CSV file for every selected approach

– evaluation/: contains all evaluation results

* rankings/: contains evaluation results from analyzing the feature rankings

· annotation/: contains annotation/enrichment files for every ranking

· metrics/: contains the actual metrics results to compare the rankings

* reducedData/: one sub-folder per selection approach containing input data for the top k features;
these files are used for the actual classification/prediction

* classification/:

· metrics/: contains the actual classification metrics results, one CSV file for every selected metric,
also contains pdfs for visualizations

· crossEvaluation/: contains evaluation data from the second data set for cross-validation

· reducedData/: one sub-folder per selection approach containing input data (second data set) for
the top k features; these files are used for the actual classification/prediction

· classification/: contains the actual classification metrics results, one CSV file for every selected
metric, also contains pdfs for visualizations

30 Chapter 5. Folder Structure - Where to find what Files (In- and Output)

CHAPTER 6

Knowledge Bases

• Comprior queries a knowledge base to retrieve relevant genes, gene association scores, or pathway information,
which is then integrated into a prior knowledge feature selection approach

• for the search, Comprior uses a) the class labels and b) alternative search terms that are provided in the config
file (see alternative search terms parameter in configuration specification)

6.1 DisGeNET

• aggregates biological information from multiple sources (meta knowledge base, see sources description for
original sources)

• provides gene-disease, variant-disease, and variant-gene association scores for genes, disease, and variants (no
pathway information) –> used for retrieving relevant genes and gene association scores

• users can choose in the config whether to use DisGeNET’s gene-disease association (GDA) score, disease
pleiotropy index, or disease specificity index (see their description for more information)

• DisGeNET uses UMLS identifiers for the search, so Comprior internally first maps the search terms to their
corresponding UMLS CUI (via the UMLS terminology web service) and forwards these to DisGeNET

6.2 OpenTargets

• provides biological information from multiple sources (meta knowledge base, see their documentation for orig-
inal sources)

• provides association gene-disease association scores (no pathway information) –> used for retrieving relevant
genes and gene association scores

31

https://www.disgenet.org/dbinfo
https://www.disgenet.org/dbinfo
https://uts.nlm.nih.gov/uts/
https://docs.targetvalidation.org/data-sources/data-sources

Comprior Documentation

6.3 KEGG

• provides manually curated pathway information –> used for retrieving relevant genes, gene association scores,
and pathway information

• pathways are parsed into pypath.Network format

6.3.1 Retrieving Relevant Genes from Pathway Information

• Comprior retrieves relevant genes from a set of pathways by selecting all their member genes and removing
duplications

6.3.2 Gene Association Score Computation from Network Information

• Comprior computes a gene association score 𝑠𝑖 for a gene 𝑖 from the sum of its degree percentile rank 𝑝𝑟𝑛,𝑖 (=
pathway genes are ranked by their number of in- and outgoing edges) for every pathway 𝑛, normalized by 𝑃𝑖

(=the overall number of pathways containing gene 𝑖):
∑︀|𝑃𝑖|

𝑛=1 𝑝𝑟𝑛,𝑖𝑖𝑓𝑖∈𝑝𝑛

|𝑃𝑖|

• this way, hub genes with a lot of interactions receive a higher score than genes at the outside rim of a pathway,
becoming even more important if they have many interactions across multiple pathways

6.4 PathwayCommons

• provides pathway information from multiple sources (meta knowledge base, see their sources for original
sources)

• relevant genes and gene association scores are currently retrieved the same way as KEGG

• pathways are parsed into pypath.Network format

32 Chapter 6. Knowledge Bases

http://www.pathwaycommons.org/

CHAPTER 7

Prior Knowledge Approaches

• Comprior provides multiple prior knowledge approaches of types Modifying Prior Knowledge Approaches,
Combining Approaches, Network/Pathway Approaches as defined by Perscheid: “Integrative biomarker detec-
tion on high-dimensional gene expression data sets: a survey on prior knowledge approaches”

• all of them can be flexibly combined with any of the available knowledge bases (see the configuration parameter
description on how to do that)

7.1 Modifying Prior Knowledge Approaches

• type of prior knowledge used: list of relevant genes (no association scores)

• traditional feature selection and prior knowledge retrieval are carried out independently

• Comprior allows to design flexible modifying prior knowledge approaches that can be combined with any knowl-
edge base and any traditional approach

• kind of two-level approaches that introduce an additional filtering or extension step before or after a traditional
feature selection approach

7.1.1 Filtering

• Prefilter: prior knowledge is retrieved first and the input data set is filtered for those genes that were retrieved
from the knowledge base; traditional feature selection is carried out afterwards

• Postfilter: Traditional feature selection is carried out first, and the resulting features are then filtered to keep only
those that were also retrieved by the knowledge base

• prefilter and postfilter approaches have the same results for univariate feature selection approaches, e.g. Variance

33

https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbaa151/5881664?casa_token=hxOBxbrIx9sAAAAA:3z1uPc75bgQB2JRnWxsGhTFSSFeRSNB-Cuys4NAvI2sHcTXvcefH8fM5sNh9L66HFy9xXM5WOxQNmw
https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbaa151/5881664?casa_token=hxOBxbrIx9sAAAAA:3z1uPc75bgQB2JRnWxsGhTFSSFeRSNB-Cuys4NAvI2sHcTXvcefH8fM5sNh9L66HFy9xXM5WOxQNmw

Comprior Documentation

7.1.2 Extension

• Comprior retrieves relevant genes and interleaves the gene ranking retrieved by a traditional approach with the
set of relevant genes from the knowledge base

• this way, a feature set always not only contains traditionally selected genes, but also nearly as much genes
that were retrieved from a knowledge base so that the feature set can contain genes that have a high statistical
relevance but no (so far identified) biological relevance according to the knowledge base and vice versa

7.2 Combining Approaches

• type of prior knowledge used: relevant genes and their association scores (for the search terms)

• traditional feature selection and prior knowledge retrieval are carried out in parallel and integrated more thor-
oughly

• if a gene has multiple association scores (because it is associated to multiple search terms), Comprior will always
keep the highest association score and remove the duplicate entries

• potentially, network information can also be retrieved via Comprior and then be mapped to some kind of rele-
vance score, e.g. by incorporating topological information of a gene

7.2.1 LassoPenalty

• gene association scores are used as individual penalty term per feature applied to Lasso

• Comprior uses the xtune R package implementation by Zeng et al.: “Incorporating prior knowledge into regu-
larized regression”

7.2.2 WeightedScore

• the final relevance score 𝑠𝑖 for a gene 𝑖 is made up of two parts: the association score from the knowledge base
𝑠𝑖,𝑘𝑏, and the statistical relevance score 𝑠𝑖,𝑡𝑟𝑎𝑑 from a traditional approach

• both scores are equally weighted to compute the final relevance score for a gene: 𝑠𝑖 = 𝑠𝑖,𝑘𝑏 × 𝑠𝑖,𝑡𝑟𝑎𝑑

7.3 Network/Pathway Approaches

• network/pathway approaches use network information to identify (sub-) networks or pathways as new features
and map the feature space from the original genes to the (sub-)networks

• network/pathway approaches thus always have a) a feature, i.e. pathway/subnetwork, selection step and b) a
mapping step where new feature values must be computed

7.3.1 NetworkActivity

• feature selection as described by Tian et al.: “Discovering statistically significant pathways in expression profil-
ing studies”

– a pathway/subnetwork is considered relevant if the gene expression profiles of its member genes correlate
with the data set classes

34 Chapter 7. Prior Knowledge Approaches

https://cran.r-project.org/web/packages/xtune/index.html
https://pubmed.ncbi.nlm.nih.gov/32915960/
https://pubmed.ncbi.nlm.nih.gov/32915960/
https://www.pnas.org/content/102/38/13544.short
https://www.pnas.org/content/102/38/13544.short

Comprior Documentation

– average ANOVA score from all pathway member genes and class labels

– rank pathways (= new features) by their ANOVA scores

• feature mapping is based on Vert and Kanehisa’s definition of pathway relevance and smoothness: “Graph-
driven feature extraction from microarray data using diffusion kernels and kernel CCA”

– omputes pathway activity scores for every sample and pathway as new feature values.

– the feature value 𝑣𝑝,𝑠 for a pathway 𝑝‘𝑎𝑛𝑑𝑠𝑎𝑚𝑝𝑙𝑒 : 𝑚𝑎𝑡ℎ : ‘𝑠 is computed by taking the expression levels
of all member genes 𝑖 (𝑒𝑥𝑝𝑟𝑖) and weighting these by the variance 𝑣𝑎𝑟𝑖 of gene 𝑖 and the average correla-
tion score 𝑐𝑜𝑟𝑟𝑖,𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝑖 of its neighbor genes in pathway 𝑝: 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑒𝑥𝑝𝑟𝑖 × 𝑣𝑎𝑟𝑖 × 𝑐𝑜𝑟𝑟𝑖,𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝑖)

7.3.2 CorgsNetworkActivity

• feature selection as described by NetworkActivity

• feature mapping as described by Lee et al: “Inferring pathway activity toward precise disease classification”

– the feature value 𝑣𝑝,𝑠 for a pathway 𝑝 and sample 𝑠 is computed in the following way:

* find the subset of genes (=CORGs) for which the score 𝑆(𝐶𝑂𝑅𝐺𝑠) is maximal (via greedy
search)

* 𝑆(𝐶𝑂𝑅𝐺𝑠) comes from a t-test between an activity vector 𝑎 = (𝑎1, ..., 𝑎𝑛) and class vector
𝑐 = (𝑐1, ...𝑐𝑛) with 𝑛 = #𝑠𝑎𝑚𝑝𝑙𝑒𝑠, i.e. every sample 𝑖 gets an activity score 𝑎𝑖 for the
particular set of genes, 𝑐𝑖 is the class label of that sample

* 𝑎𝑖 is computed from 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑒𝑥𝑝𝑟𝑖,𝐶𝑂𝑅𝐺𝑠)√
𝑘

, with 𝑘 = #𝐶𝑂𝑅𝐺𝑠 and 𝑒𝑥𝑝𝑟𝑖,𝐶𝑂𝑅𝐺𝑠 being the
expression values of all CORGs genes for sample 𝑖

7.3. Network/Pathway Approaches 35

http://members.cbio.mines-paristech.fr/~jvert/svn/bibli/local/Vert2003Graph-driven.pdf
http://members.cbio.mines-paristech.fr/~jvert/svn/bibli/local/Vert2003Graph-driven.pdf
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000217

Comprior Documentation

36 Chapter 7. Prior Knowledge Approaches

CHAPTER 8

Extending Comprior - How-Tos

8.1 Add New Preprocessing Functionality

8.1.1 1. Implement a new Preprocessor

Every preprocessing functionality must be implemented in its own class. To achieve that, create a new class
that inherits from preprocessing.Preprocessor and implements preprocessing.Preprocessor.
preprocess() method, e.g.

class ExamplePreprocessor(Preprocessor):
"""Does some example preprocessing

:param input: absolute path to the input file to preprocess.
:type input: str
:param output: absolute path to the output directory where to store the

→˓preprocessing results.
:type output: str
:param whatever_you_need: whatever other parameters your preprocessor needs.
"""

def __init__(self, input, output, whatever_you_need):
self.whatever_you_need = whatever_you_need
super().__init__(input, None, output)

def preprocess(self):
"""Does some example preprocessing

:return: absolute path to the new file location.
:rtype: str
"""

#implement your preprocessing here...

return self.output

37

Comprior Documentation

8.1.2 2. Update the Config File (optional)

If your preprocessing functionality requires that the user sets any specific parameters, adapt the preprocessing section
of config.ini and include these parameters. Do not forget to provide this config to your preprocessor class then.

8.1.3 3. Include the Preprocessor in the Execution Pipeline

Add your preprocessor to pipeline.Pipeline.preprocessData() method. Make sure that a)
preprocessing.DataTransformationPreprocessor is always the first preprocessor (it transforms the
file to use pandas’ default separator so that we do not need to handle different separators anymore), b) all preproces-
sores write their outputs to the same intermediate directory, and c) set the correct inputs: your preprocessor’s input is
the output of the preceding preprocessor, your preprocessor’s output will be the input of the subsequent preprocessor:

dataFormatter = preprocessing.DataTransformationPreprocessor(input, input_metadata,
→˓intermediate_output, sep)
transposed_input = dataFormatter.preprocess()

#here comes your new preprocessor
examplePreprocessor = preprocessing.ExamplePreprocessor(transposed_input,
→˓intermediate_output, whatever_you_need)
exampled_input = examplePreprocessor.preprocess()

mappingPreprocessor = preprocessing.MappingPreprocessor(exampled_input, intermediate_
→˓output, currentIDFormat, desiredIDFormat, False)
mapped_input = mappingPreprocessor.preprocess()

8.2 Add a New Knowledge Base

Every knowledge base needs to classes: One class inheriting from knowledgebases.KnowledgeBase and im-
plementing the interface methods and a second class inheriting from bioservice’s REST class for web service access.

8.2.1 1 Implement KnowledgeBase Class

The class inheriting from knowledgebase.KnowledgeBase is accessed from any other class within
Comprior that wants to retrieve prior knowledge. It must implement the methods knowledgebases.
KnowledgeBase.getRelevantGenes(), knowledgebases.KnowledgeBase.getGeneScores(),
and knowledgebases.KnowledgeBase.getRelevantPathways() (depending on the type of knowledge
base, raise a NotImplementedError).

class ExampleKB(KnowledgeBase):
def __init__(self):
#pass the knowledge base name, its config, the web service accessing class, and

→˓booleans indicating what type of knowledge is provided by that knowledge base
geneInfo = True
pathwayInfo = False
super().__init__("ExampleKB", util.getConfig("ExampleKB"), ExampleKBWS(),

→˓geneInfo, pathwayInfo)

def getRelevantGenes(self, labels):
"""Get all genes that are somehow associated to the given labels, e.g. disease

→˓names.

(continues on next page)

38 Chapter 8. Extending Comprior - How-Tos

Comprior Documentation

(continued from previous page)

:param labels: list of identifiers, e.g. disease names, for which to find
→˓associated genes.

:type labels: list of str
:return: list of associated genes.
:rtype: list of str
"""

#implement the gene retrieval strategy here...
return genes

def getGeneScores(self, labels):
"""Get all genes and their association scores that are related to the given labels,

→˓e.g. disease names.

:param labels: list of identifiers, e.g. disease names, for which to find
→˓associated genes.

:type labels: list of str
:return: DataFrame of associated genes and their association scores, in

→˓descending order.
:rtype: :class:`pandas.DataFrame`
"""

#implement the gene score retrieval strategy here...
#if your knowledge base provides pathways only, you can implement an own strategy

→˓or raise a NotImplementedError

return geneScores

def getRelevantPathways(self, labels):
"""As this knowledge base currently does not provide pathway information, this

→˓feature is not implemented.

:param labels: list of labels for which to find related pathways.
:type labels: list of str
:return: :class:`NotImplementedError` as this knowledge base is not intended

→˓to be used for such analyses.
:rtype: :class:`NotImplementedError`
"""

#if the knowledge base does not provide pathway information, raise a
→˓NotImplementedError

raise NotImplementedError()

8.2.2 2 Implement a Pathway Parser (optional)

If the knowledge base provides pathway or network information, parse the pathway information into a
pypath pypath.Network (for an example, see knowledgebases.KEGGPathwayParser). Inherit
from knowledgebases.PathwayParser to do that and implement your own knowledgebases.
PathwayParser.parsePathway() method:

class ExamplePathwayParser(PathwayParser):
"""Parses a pathway from a custom format to :class:`pypath.Network`.
"""

(continues on next page)

8.2. Add a New Knowledge Base 39

Comprior Documentation

(continued from previous page)

def parsePathway(self, pathway, pathwayID):
"""Parse pathway to the internally used format of :class:`pypath.Network`.

:param pathway: pathway string to parse
:type pathway: str
:param pathwayID: name of the pathway
:type pathwayID: str
:return: pathway in the internally used format..
:rtype: :class:`pypath.Network`
"""

#implement your pathway parsing strategy here...

return pathway

8.2.3 3 Implement Web Service Accessing Class

First of all, check if bioservices already provides a class for accessing the knowledge base web service: https:
//bioservices.readthedocs.io/en/master/references.html#services If your knowledge base is not available, implement
your own class by inheriting from bioservice’s REST or WSDL classes. Optimally, your REST class provides the API
endpoints as methods, so if there is an endpoint search, implement a corresponding method named search. To send
the actual request, construct a query string that specifies our endpoint (without the general API url) and provide that
string to self.http_get(your_string).

class ExampleKBWS(REST):
"""Queries the web service of ExampleKB for a given set of labels and retrieves
→˓association scores for all genes related to the query labels.

"""
def __init__(self):

super().__init__("ExampleKBWS", url=util.config["ExampleKB"]["webservice_url"])

def getVersion(self):
"""Get the current version of the API endpoint.

:return: web service version infos.
:rtype: json dict
"""

ret = self.http_get("/version")
return ret

8.2.4 4 Update the Config File

Create a new section in config.ini for your knowledge base. It must contain an output directory (where intermediate
results are written to), optionally the web service API URL (if you had to implement your own REST class), and any
other parameter you need for your knowledge base class to function.

[ExampleKB]
webservice_url = https://www.myexamplekbwebservice.org/api
outputDir = ${General:externalKbDir}ExampleKB/

40 Chapter 8. Extending Comprior - How-Tos

https://bioservices.readthedocs.io/en/master/references.html#services
https://bioservices.readthedocs.io/en/master/references.html#services

Comprior Documentation

8.2.5 5 Register the Knowledge Base at KnowledgeBaseFactory

Register your new knowledge base at knowledgebases.KnowledgeBaseFactory.
createKnowledgeBase(). If your knowledge base is o not forget to provide the pathway parser to your
knowledge base when creating

def createKnowledgeBase(self, knowledgebase):
"""Creates knowledge base based on a given name.

:param knowledgebase: name of the knowledge base to be created.
:type knowledgebase: str
:return: knowledge base object.
:rtype: :class:`KnowledgeBase` or inheriting classes
"""

if knowledgebase == "ExampleKB":
return ExampleKB()

if knowledgebase == "ExamplePathwayKB":
#create a pathway parser if your knowledge base requires that
pathwayparser = ExamplePathwayParser()
return ExamplePathwayKB(pathwayparser)

8.3 Add a new Feature Selector Approach

8.3.1 1a. Implement a Feature Selector

Feature selection approaches are implemented in separate classes for each approach. Inherit from one (or multiple)
of the many abstract classes that are available for feature selectors, e.g. featureselection.RSelector when
invoking R code or featureselection.PriorKnowledgeSelector when implementing a prior knowledge
approach that uses a knowledge base. See all the class hierarchy HERE.

class ExampleSelector(PriorKnowledgeSelector):
def __init__(self, knowledgebase, whatever_you_need):
self.whatever_you_need = whatever_you_need
super().__init__("YourSelectorName", knowledgebase)

def selectFeatures(self):
"""Your feature selection strategy.

:return: absolute path to the output ranking file.
:rtype: str
"""

#define the name of the output file name (must follow this schema!)
outputFilename = self.output + self.getName() + ".csv"

#implement your feature selection procedure here...

return outputFilename

8.3. Add a new Feature Selector Approach 41

Comprior Documentation

8.3.2 1b. Implement a Network Selector

If you want to implement a network approach that maps the original feature space of the data to (sub-)networks, e.g.
pathways, inherit from featureselection.NetworkSelector and implement its featureselection.
NetworkSelector.selectPathways() instead:

class ExampleNetworkSelector(NetworkSelector):

def __init__(self, knowledgebase, featuremapper):
super().__init__("YourNetworkSelector", knowledgebase, featuremapper)

def selectPathways(self, pathways):
"""Your pathway selection strategy

:param pathways: selector name
:type pathways: str
:returns: pathway ranking with pathway scores
:rtype: :class:`pandas.DataFrame`
"""
#implement your pathway/subnetwork selection strategy here...

return pathwayRanking

Classes inheriting from featureselection.NetworkSelector additionally require a feature mapper that,
once the (sub-) networks were selected as new features by your new network selector, creates new feature values for
every selected (sub-) network. To do that, either use an existing feature mapper or implement a new one that inher-
its from featureselection.FeatureMapper and implements featureselection.FeatureMapper.
mapFeatures():

class ExampleFeatureMapper(FeatureMapper):

def __init__(self,):
super().__init__()

def mapFeatures(self, original_data, subnetworkNames, subnetworks):
"""Your feature mapping strategy

:param original_data: the original data set of which to map the feature
→˓space.

:type original_data: :class:`pandas.DataFrame`
:param pathways: dict of pathway names as keys and corresponding pathway

→˓:class:`pypath.Network` objects as values
:type pathways: dict
:returns: the transformed data set with new feature values
:rtype: :class:`pandas.DataFrame`
"""
#implement your feature mapping strategy here...

return mappedDataset

8.3.3 2. Update the Config File

List the new feature selection approach in the comments of the config.ini file and preferably, this Wiki ;). When
providing a name to your feature selection approach, follow this naming schema (YourSelectorName MUST be the
same as the name provided in the selector’s init method):

• YourSelectorName for a traditional approach without any knowledge base

42 Chapter 8. Extending Comprior - How-Tos

Comprior Documentation

• YourSelectorName_kbName for a selector that uses a knowledge base

• YourSelectorName_tradName_kbName for a selector that uses a knowledge base and another selector.

8.3.4 3. Register Feature/Network Selection Approach to the FeatureSelectorFac-
tory

Register your new feature selector class at featureselection.FeatureSelectorFactory in one of the fol-
lowing methods, depending on the type of selector you implemented (see the sources as the methods are encapsulated
in a singleton construct):

• featureselection.FeatureSelectorFactory.createTraditionalSelector() if it is a
traditional selector not using a knowledge base

• featureselection.FeatureSelectorFactory.createCombinedSelector() if it uses a tra-
ditional approach and a knowledge base in a combined manner

• featureselection.FeatureSelectorFactory.createIntegrativeSelector() if it is a
selector that only uses a knowledge base

When registering, you need to specify the first part (=YourSelectorName) of the overall name as an if-statement

def createIntegrativeSelector(self, selectorName, kb):
"""Creates a feature selector using a knowledge base from the given selector and
→˓knowledge base names.
Register new implementations of a prior knowledge selector here that does not

→˓requires a (traditional) selector.
Stops processing if the selector could not be found.

:param selectorName: selector name
:type selectorName: str
:param kb: knowledge base name
:type kb: str
:return: instance of a feature selector implementation.
:rtype: :class:`FeatureSelector` or inheriting class
"""
kbfactory = knowledgebases.KnowledgeBaseFactory()
knowledgebase = kbfactory.createKnowledgeBase(kb)

if selectorName == "YourSelectorName":
return ExampleSelector(knowledgebase)

if selectorName == "YourNetworkSelectorName":
featureMapper = ExampleFeatureMapper()
return ExampleNetworkSelector(knowledgebase, featureMapper)

8.4 Add Custom Code from R/Java/another Programming Languages

8.4.1 Invoking R or Java Code

The benchutils package provides methods for invoking R or Java code (benchutils.
runRCommand() and benchutils.runJavaCommand(), respectively). These methods
are already used, e.g. by featureselection.RSelector.selectFeatures() and
featureselection.JavaSelector.selectFeatures(). If you have R or Java code that
you want to invoke, use these methods and provide them with the R/Java config parameters, the name

8.4. Add Custom Code from R/Java/another Programming Languages 43

Comprior Documentation

of the script/jar to execute, and a list of parameters. The example below runs an R script called
“FS_LassoPenalty.R” that expects three parameters providing file names to the input, output, and external
score files.

params = [input_filename, output_filename, externalscores_filename]
benchutils.runRCommand(self.rConfig, "FS_LassoPenalty.R" , params)

8.4.2 Invoking Code from Another Programming Language than R or Java

Currently, Comprior supports to run Python, R, and Java code. If you want to integrate custom code
from another programming language, you can implement a corresponding function like benchutils.
runRCommand() and benchutils.runJavaCommand(). Such a function constructs an execution
string that is then forwarded to the command line. To do that,

• create a new folder for your programming language in Comprior’s code directory (next
to the Python, R, and Java directories), e.g. Cpp for adding C++ code

• place your executable files or script(s) into the new directory

• adapt the config.ini file and add a new segment for the programming language that
contains the path to your executable source code (e.g. the compiled files of your C++
code) and to the programming language interpreter (for C++, however, code is invoked
by just typing ./filename on the command line)

[C++]
code = ${General:homePath}code/Cpp
CppLocation=./

• adapt benchutils.py and implement an additional function (do not forget to add code
documentation!)

def runCppCommand(cppConfig, filename, params):
"""Run external C++ code.

:param cppConfig: C++ config parameters (store paths to C++ and
→˓the C++ code).
:type cppConfig: dict
:param filename: name of the C++ file to be executed.
:type filename: str
:param params: list of parameters that will be forwarded to the

→˓C++ file.
:type params: list of str
"""
args = [cppConfig["C++"], filename]
args.extend(params)
print(args)
p = subprocess.Popen(args, cwd=cppConfig["code"])
p.wait()

• invoke your code from within Python as described above in Invoking R or Java Code.

44 Chapter 8. Extending Comprior - How-Tos

CHAPTER 9

Python Code Documentation

9.1 pipeline module

The framework module is responsible for orchestrating the complete benchmarking process. It is the starting point
that is invoked when running Comprior. It tidies up and prepares working directories, creates and coordinates the
execution order of preprocessing modules, feature selectors, and evaluation procedures.

class pipeline.Pipeline(userConfig)
Bases: object

Class that executes the complete benchmarking pipeline.

Parameters outputRootPath (str) – absolute path to the overall output directory (will be
extended by own folders by every evaluation.Evaluator).

prepareExecution(userConfig)
Prepares the pipeline execution by loading the configuration file, clearing intermediate directories, and
creating output directories.

Parameters userConfig (str) – absolute path to an additional user configuration file
(config.ini will always be used by default) to overwrite default configuration.

evaluateInputData(inputfile)
Run evaluation.DatasetEvaluator to create plots as specified by the config’s Evaluation-
preanalysis parameter.

Parameters inputfile (str) – absolute path to the input data set to be analyzed.

evaluateKnowledgeBases(labeledInputDataPath)
Evaluates knowledge base coverage for all knowledge bases that are used in the specified feature selection
methods. Uses the class labels and alternativeSearchTerms from the config, queries the knowledge bases
and creates corresponding plots regarding coverage of theses search terms.

Parameters labeledInputDataPath (str) – absolute path to the labeled input data set.

runFeatureSelector(selector, datasetLocation, outputDir, loggingDir)
Runs a given feature selector.

45

Comprior Documentation

Parameters

• selector (featureselection.FeatureSelector) – Any feature selector
that inherits from featureselection.FeatureSelector.

• datasetLocation (str) – absolute path to the input data set (from which fea-
tures should be selected).

• outputDir (str) – absolute path to the selector’s output directory (where ranking
will be written to).

selectFeatures(datasetLocation)
Creates and runs all feature selectors that are listed in the config file. Applies parallelization by running
as much feature selectors in parallel as stated in the config’s General–>numCores attribute.

Parameters

• datasetLocation (str) – absolute path to the input data set (from which fea-
tures should be selected).

• outputRootPath (str) – absolute path to the selector’s output directory (where
ranking will be written to).

Returns absolute path to directory that contains generated feature rankings.

Return type str

assignColors(methods)
Assigns each (feature selection) method a unique color. Will be delivered later on to every
evaluation.Evaluator instance to create visualizations with consistent coloring for evaluated ap-
proaches.

Parameters methods (List of str) – List of method names.

Returns Dictionary containing hex color codes for every method

Return type dict

assignMarkers(approaches)
Assigns each (feature selection) method a unique color. Will be delivered later on to every
evaluation.Evaluator instance to create visualizations with consistent coloring for evaluated ap-
proaches.

Parameters methods (List of str) – List of method names.

Returns Dictionary containing hex color codes for every method

Return type dict

evaluateBiomarkers(inputDir, dataset, rankingsDir)
Covers the evaluation phase. Processes input data to only contain the top k selected features per
feature selection approach via the evaluation.AttributeRemover. Runs all selected evalu-
ation strategies that cover assessment of rankings (evaluation.RankingsEvaluator), anno-
tations(evaluation.AnnotationEvaluator), and classification performance (evaluation.
ClassificationEvaluator). If selected, also conducts cross-validation across data sets with
evaluation.CrossEvaluator.

Parameters

• inputDir (str) – absolute path to the directory where input data sets are located
(for evaluation.AttributeRemover).

• dataset (str) – absolute file path to the input data set (from which features should
be selected).

46 Chapter 9. Python Code Documentation

Comprior Documentation

• rankingsDir (str) – absolute path to the directory that contains all rankings.

preprocessData()
Preprocesses the input data set specified in the config file. Preprocessing consists of a) transposing the
data so that features are in the columns (if necessary), b) mapping the features to the right format (if
necessary), c) labeling the data with the user-specified metadata attribute, d) filtering features or samples
that have too few information (optional, specified via config), and finally e) putting the analysis-ready
data set to the right location for further processing.

Returns A tuple consisting of the absolute path to the analysis-ready data set and the absolute
path to the mapped input final_filename and mapped_input

Return type tuple(str,str)

loadConfig(userConfig)
Loads the config files. config.ini will always be loaded as default config file, all other config files provided
by userConfig overwrite corresponding values.

Parameters userConfig (str or List of str, optional) – absolute path(s) to user-defined
config files that should be used. If config files specify the same parameter, the value
specified by the last config file in the list will be used.

prepareDirectories()
Prepares directory structure for benchmarking run. Creates all necessary directories in the output folder.
Also cleans up intermediate directory so that no old data is accidentially used.

Returns absolute path to the directory where all results from this run will be stored.

Return type str

executePipeline()

The entry point for the overall benchmarking process. This method is invoked when running the
framework, and from here all other steps of the benchmarking process are encapsulated in own
methods.

Parameters userConfig (str) – absolute path to an additional user configuration file
(config.ini will always be used by default) to overwrite default configuration.

9.2 benchutils module

Utility module that provides functionality that is repeatedly used across the system, e.g. directory handling and file
loading, identifier mapping, logging, and running external code from R or Java. It also loads and stores the configura-
tion parameters.

benchutils.loadConfig(path)
Loads the config files.

Parameters path (str or list of str) – absolute path or list of absolute paths to the
config files. For multiple config files specifying the same parameters, the ones from the last
config file in the list will be used.

benchutils.getConfig(category)
Get the config entries for a particular category.

Parameters category (str) – category name.

Returns all parameters for that config category

Return type dict

9.2. benchutils module 47

Comprior Documentation

benchutils.getConfigValue(category, identifier)
Get the value for a given config parameter.

Parameters

• category (str) – the parameter’s category name.

• identifier (str) – the parameter name.

Returns the parameter value.

Return type str

benchutils.getConfigBoolean(category, identifier)
Get the boolean value for a given config parameter.

Parameters

• category (str) – the parameter’s category name.

• identifier (str) – the parameter name.

Returns the parameter boolean value.

Return type bool

benchutils.loadRanking(rankingFile)
Load a feature ranking from a file.

Parameters rankingFile (str) – absolute path to the file containing a feature ranking.

Returns the feature ranking as a DataFrame.

Return type pandas.DataFrame

benchutils.createOrClearDirectory(directoryLocation)
If the provided directory location is already existing, remove all files in that directory. Create a new directory
otherwise.

Parameters directoryLocation (str) – absolute path to the directory that must be cleared
or created.

benchutils.createDirectory(directoryLocation)
Creates a directory.

Parameters directoryLocation (str) – absolute path to the directory to be created.

benchutils.removeDirectoryContent(directoryLocation)
Remove the files inside a directory.

Parameters directoryLocation (str) – absolute path to the directory that must be cleared.

benchutils.removeFile(file)
Delete a file.

Parameters file (str) – absolute path to the file that must be deleted.

benchutils.cleanupResults()
Remove all intermediate files from former runs, e.g. generated during preprocessing or mapping.

benchutils.createLogger(outputPath)
Create a logger for Comprior. Creates two handlers for this logger: one for console output that only contains
high-level status update logs and error messages. Warnings and other tracing information is written to an extra
log file.

Parameters outputPath (String) – absoulte path to where the log file will be stored.

48 Chapter 9. Python Code Documentation

Comprior Documentation

benchutils.logDebug(message)
Write a log at debug level.

Parameters message (String) – the log message to print.

benchutils.logInfo(message)
Write a log at info level.

Parameters message (String) – the log message to print.

benchutils.logWarning(message)
Write a log at warning level.

Parameters message (String) – the log message to print.

benchutils.logError(message)
Write a log at error level.

Parameters message (String) – the log message to print.

benchutils.createTimeLog()
Create the data structure for tracing runtimes of feature selection approaches.

Returns the logging data structure.

Return type pandas.DataFrame

benchutils.flushTimeLog(timeLogs, outputFilePath)
Write the whole log (of runtimes) to a file.

Parameters

• timeLogs (pandas.DataFrame) – the logs in a DataFrame.

• outputFilePath (str) – absolute path to the log file.

benchutils.logRuntime(timeLogs, start, end, message)
Write a runtime log entry and add it to the runtime log data structure.

Parameters

• timeLogs (pandas.DataFrame) – logs to which the new entry should be added

• start (str) – starting time.

• end (str) – ending time.

• message (str) – description of that entry.

Returns updated logs.

Return type pandas.DataFrame

benchutils.runRCommand(rConfig, scriptName, params)
Run external R code.

Parameters

• rConfig (dict) – R config parameters (store paths to Rscript and the R code).

• scriptName (str) – name of the R script to be executed.

• params (list of str) – list of parameters that will be forwarded to the R script.

benchutils.runJavaCommand(javaConfig, scriptName, params)
Run external Java code.

Parameters

9.2. benchutils module 49

Comprior Documentation

• javaConfig (dict) – java config parameters (store paths to java and the java code).

• scriptName (str) – name of the jar to be executed.

• params (list of str) – list of parameters that will be forwarded to the jar.

benchutils.mapIdentifiers(itemList, originalFormat, desiredFormat)
Write a log entry and add it to the log data structure.

Parameters

• itemList (list of str) – list of identifiers, e.g. gene names, to be mapped

• originalFormat (str) – current format of the identifiers.

• desiredFormat (str) – desired format to which the identifiers should be mapped.

Returns mapping table where every item from itemList is now mapped to desiredFormat.

Return type pandas.DataFrame

benchutils.mapGeneList(genes, originalFormat, desiredFormat, outputFile)
Map a list of genes to the desired format.

Parameters

• genes (list of str) – list of gene names to be mapped

• originalFormat (str) – current format of the gene names.

• desiredFormat (str) – desired format to which the gene names should be mapped.

• outputFile (str) – absolute path to the output file in which the mapping should be
stored.

Returns list of mapped gene names.

Return type list of str

benchutils.mapRanking(ranking, originalFormat, desiredFormat, outputFile)
Map the feature names of a ranking to the desired format.

Parameters

• ranking (pandas.DataFrame) – DataFrame of the ranking.

• originalFormat (str) – current format of the feature names in the ranking.

• desiredFormat (str) – desired format to which the feature names should be
mapped.

• outputFile (str) – absolute path to the output file in which the mapped feature
ranking should be stored.

Returns mapped feature ranking.

Return type pandas.DataFrame

benchutils.retrieveMappings(itemList, originalFormat, desiredFormat)
Query the knowledge base to map the identifiers. We have mapping via BiomaRt and gConvert available.
gConvert is currently used because BiomaRt is unstable and blocks when parallel queries are sent.

Parameters

• itemList (list of str) – list of identifier names to be mapped

• originalFormat (str) – current format of the identifiers.

• desiredFormat (str) – desired format to which the identifiers should be mapped.

50 Chapter 9. Python Code Documentation

Comprior Documentation

Returns mapping table for all identifiers.

Return type pandas.DataFrame

benchutils.mapDataMatrix(inputMatrix, genesInColumns, originalFormat, desiredFormat, output-
File, labeled)

Map the features of a data set to the desired format.

Parameters

• inputMatrix (pandas.DataFrame) – DataFrame of the ranking.

• genesInColumns (bool) – if the genes/features are located in the columns.

• originalFormat (str) – current format of the feature names in the data set.

• desiredFormat (str) – desired format to which the feature names should be
mapped.

• outputFile (str) – absolute path to the output file in which the mapped data set
should be stored.

• labeled (bool) – if the data matrix is additionally labeled.

Returns mapped data set.

Return type pandas.DataFrame

9.3 preprocessing module

Contains all classes related to preprocessing. All classes providing preprocessing functionality have to inherit from
the abstract class preprocessing.Preprocessor and implement its preprocessing.Preprocessor.
preprocess()method. For a detailed look at the class architecture, have a look at ADD CLASS ARCHITECTURE
LINK HERE.

class preprocessing.Preprocessor(input, metadata, output)
Bases: object

Super class of all preprocessor implementations. Inherit from this class and implement preprocessing.
Preprocessor.preprocess() if you want to add a new preprocessor class.

Parameters

• input (str) – absolute path to the input file.

• metadata (str) – absolute path to the metadata file.

• output (str) – absolute path to the output directory.

preprocess()
Abstract method. Interface method that is invoked externally to trigger preprocessing.

Returns absolute path to the preprocessed output file.

Return type str

class preprocessing.MappingPreprocessor(input, output, currentFormat, desiredFormat, la-
beled)

Bases: preprocessing.Preprocessor

Maps the input data set to a desired format.

Parameters

• input (str) – absolute path to the input file.

9.3. preprocessing module 51

Comprior Documentation

• output (str) – absolute path to the output directory.

• currentFormat (str) – current identifier format.

• desiredFormat (str) – desired identifier format.

• labeled (bool) – boolean value if the input data is labeled.

preprocess()
Maps the identifiers in the input dataset to the desired format that was specified when constructing the
preprocessor.

Returns absolute path to the mapped file.

Return type str

class preprocessing.FilterPreprocessor(input, metadata, output)
Bases: preprocessing.Preprocessor

Filters features or samples above a user-defined threshold of missing values.

Parameters

• input (str) – absolute path to the input file.

• metadata (str) – absolute path to the metadata file.

• output (str) – absolute path to the output directory.

• config (str) – configuration parameter for preprocessing as specified in the config
file.

preprocess()
Depending on what is specified in the config file, filter samples and/or features. Remove all sam-
ples/features that have missing values above the threshold specified in the config.

Returns absolute path to the filtered output file.

Return type str

filterMissings(threshold, data)
Filter the data for entries that have missing information above the given threshold.

Parameters

• threshold (str) – maximum percentage of allowed missing items as string.

• data (pandas.DataFrame) – a DataFrame to be filtered

Returns filtered DataFrame.

Return type pandas.DataFrame

class preprocessing.DataTransformationPreprocessor(input, metadata, output, dataSepa-
rator)

Bases: preprocessing.Preprocessor

Transform the input data to have features in the columns for subsequent processing.

Parameters

• input (str) – absolute path to the input file.

• metadata (str) – absolute path to the metadata file.

• output (str) – absolute path to the output directory.

• dataSeparator (str) – delimiter to use when parsing the input file.

52 Chapter 9. Python Code Documentation

Comprior Documentation

preprocess()
If not already so, transpose the input data to have the features in the columns.

Returns absolute path to the correctly formatted output file.

Return type str

class preprocessing.MetaDataPreprocessor(input, metadata, output, separator)
Bases: preprocessing.Preprocessor

Add labels to input data. Get labels from meta data attribute that was specified in the user config.

Parameters

• input (str) – absolute path to the input file.

• metadata (str) – absolute path to the metadata file.

• output (str) – absolute path to the output directory.

• dataSeparator (str) – delimiter to use when parsing the input and metadata file.

• diseaseColumn (str) – column name of the class labels.

• transposeMetadataMatrix (bool) – boolean value if the identifier names are
located in the columns, as specified in the config file.

preprocess()
Labels all samples of a data set. Labels are taken from the corresponding metadata file and the metadata
attribute that was specified in the config file. Samples without metadata information well be assigned to
class “NotAvailable”.

Returns absolute path to the labeled data set.

Return type str

class preprocessing.DataMovePreprocessor(input, output)
Bases: preprocessing.Preprocessor

Moves the input data set to the specified location.

Parameters

• input (str) – absolute path to the input file.

• output (str) – absolute path to the output directory.

preprocess()
Moves a file (self.input) to another location (self.output). Typically used at the end of preprocessing, when
the final data set is moved to a new location for the actual analysis.

Returns absolute path to the new file location.

Return type str

9.4 featureselection module

Contains all classes related to feature selection. Each feature selection approach must be implemented in its own
class inheriting from the abstract super class featureselection.FeatureSelector or one of its abstract
subclasses, e.g. for including R or Java code. Each feature selection class must implement setParams() and selectFea-
tures(), as input or output parameters are just set at runtime.

9.4. featureselection module 53

Comprior Documentation

Feature extraction methods are implemented in the same structure, except that they need to have an instance of a
class inheriting from featureselection.PathwayMapper assigned to them so that the feature space can be
transformed from the original to the new, e.g. pathways.

The creation of feature selectors is encapsulated by the class featureselection.
FeatureSelectorFactory that takes care that every selector is equipped correspondingly, e.g. with a
knowledge base or another feature selector. For a detailed look at the class architecture and the inheritance structure,
have a look at ADD CLASS ARCHITECTURE LINK HERE.

class featureselection.FeatureSelectorFactory
Bases: object

Singleton class. Python code encapsulates it in a way that is not shown in Sphinx, so have a look at the descrip-
tions in the source code.

Creates feature selector object based on a given name. New feature selection approaches must be registered
here. Names for feature selectors must follow to a particular scheme, with keywords separated by _: - first key-
word is the actual selector name - if needed, second keyword is the knowledge base - if needed, third keyword
is the (traditional) approach to be combined Examples: - Traditional Approaches have only one keyword, e.g.
InfoGain or ANOVA - LassoPenalty_KEGG provides KEGG information to the LassoPenalty feature selec-
tion approach - Weighted_KEGG_InfoGain –> Factory creates an instance of KBweightedSelector which uses
KEGG as knowledge base and InfoGain as traditional selector. While the focus here lies on the combination of
traditional approaches with prior biological knowledge, it is theoretically possible to use ANY selector object
for combination that inherits from FeatureSelector.

Parameters config (dict) – configuration parameters for UMLS web service as specified in
config file.

instance = None

class featureselection.FeatureSelector(name)
Bases: object

Abstract super class for feature selection functionality. Every feature selection class has to inherit from
this class and implement its FeatureSelector.selectFeatures() method and - if necessary - its
FeatureSelector.setParams() method. Once created, feature selection can be triggered by first set-
ting parameters (input, output, etc) as needed with FeatureSelector.setParams(). The actual feature
selection is triggered by invoking FeatureSelector.selectFeatures().

Parameters

• input (str) – absolute path to input dataset.

• output (str) – absolute path to output directory (where the ranking will be stored).

• dataset (pandas.DataFrame) – the dataset for which to select features. Will be
loaded dynamically based on self.input at first usage.

• dataConfig (dict) – config parameters for input data set.

• name (str) – selector name

selectFeatures()
Abstract. Invoke feature selection functionality in this method when implementing a new selector

Returns absolute path to the output ranking file.

Return type str

getTimeLogs()
Gets all logs for this selector.

54 Chapter 9. Python Code Documentation

Comprior Documentation

Returns dataframe of logged events containing start/end time, duration, and a short descrip-
tion.

Return type pandas.DataFrame

setTimeLogs(newTimeLogs)
Overwrites the current logs with new ones.

Parameters newTimeLogs (pandas.DataFrame) – new dataframe of logged events
containing start/end time, duration, and a short description.

disableLogFlush()
Disables log flushing (i.e., writing the log to a separate file) of the selector at the end of feature selection.
This is needed when a CombiningSelector uses a second selector and wants to avoid that its log
messages are written, potentially overwriting logs from another selector of the same name.

enableLogFlush()
Enables log flushing, i.e. writing the logs to a separate file at the end of feature selection.

getName()
Gets the selector’s name.

Returns selector name.

Return type str

getData()
Gets the labeled dataset from which to select features.

Returns dataframe containing the dataset with class labels.

Return type pandas.DataFrame

getUnlabeledData()
Gets the dataset without labels.

Returns dataframe containing the dataset without class labels.

Return type pandas.DataFrame

getFeatures()
Gets features from the dataset.

Returns list of features.

Return type list of str

getUniqueLabels()
Gets the unique class labels available in the dataset.

Returns list of distinct class labels.

Return type list of str

getLabels()
Gets the labels in the data set.

Returns all labels from the dataset.

Return type list of str

setParams(inputPath, outputDir, loggingDir)
Sets parameters for the feature selection run: path to the input datast and path to the output directory.

Parameters

9.4. featureselection module 55

Comprior Documentation

• inputPath (str) – absolute path to the input file containing the dataset for analy-
sis.

• outputDir (str) – absolute path to the output directory (where to store the rank-
ing)

• loggingDir (str) – absolute path to the logging directory (where to store log
files)

writeRankingToFile(ranking, outputFile, index=False)
Writes a given ranking to a specified file.

Parameters

• ranking (pandas.DataFrame) – dataframe with the ranking.

• outputFile (str) – absolute path of the file where ranking will be stored.

• index (bool, default False) – whether to write the dataframe’s index or
not.

class featureselection.PythonSelector(name)
Bases: featureselection.FeatureSelector

Abstract. Inherit from this class when implementing a feature selector using any of scikit-learn’s functionality.
As functionality invocation, input preprocessing and output postprocessing are typically very similar/the same
for such implementations, this class already encapsulates it. Instead of implementing PythonSelector.
selectFeatures(), implement PythonSelector.runSelector().

runSelector(data, labels)
Abstract - implement this method when inheriting from this class. Runs the actual feature selector of
scikit-learn. Is invoked by PythonSelector.selectFeatures().

Parameters

• data (pandas.DataFrame) – dataframe containing the unlabeled dataset.

• labels (list of int) – numerically encoded class labels.

Returns sklearn/mlxtend selector that ran the selection (containing coefficients etc.).

selectFeatures()
Executes the feature selection procedure. Prepares the input data set to match scikit-learn’s expected
formats and postprocesses the output to create a ranking.

Returns absolute path to the output ranking file.

Return type str

prepareInput()
Prepares the input data set before running any of scikit-learn’s selectors. Removes the labels from the
input data set and encodes the labels in numbers.

Returns dataset (without labels) and labels encoded in numbers.

Return type pandas.DataFrame and list of int

prepareOutput(outputFile, data, selector)
Transforms the selector output to a valid ranking and stores it into the specified file.

Parameters

• outputFile (str) – absolute path of the file to which to write the ranking.

• data (pandas.DataFrame) – input dataset.

56 Chapter 9. Python Code Documentation

Comprior Documentation

• selector – selector object from scikit-learn.

class featureselection.RSelector(name)
Bases: featureselection.FeatureSelector

Selector class for invoking R code for feature selection. Inherit from this class if you want to use R code, imple-
ment RSelector.createParams() with what your script requires, and set self.scriptName accordingly.

Parameters rConfig (dict) – config parameters to execute R code.

createParams(filename)
Abstract. Implement this method to set the parameters your R script requires.

Parameters filename (str) – absolute path of the output file.

Returns list of parameters to use for R code execution, e.g. input and output filenames.

Return type list of str

selectFeatures()
Triggers the feature selection. Actually a wrapper method that invokes external R code.

Returns absolute path to the result file containing the ranking.

Return type str

class featureselection.JavaSelector(name)
Bases: featureselection.FeatureSelector

Selector class for invoking R code for feature selection. Inherit from this class if you want to use R code, imple-
ment RSelector.createParams() with what your script requires, and set self.scriptName accordingly.

Parameters javaConfig (dict) – config parameters to execute java code.

createParams()
Abstract. Implement this method to set the parameters your java code requires.

Returns list of parameters to use for java code execution, e.g. input and output filenames.

Return type list of str

selectFeatures()
Triggers the feature selection. Actually a wrapper method that invokes external java code.

Returns absolute path to the result file containing the ranking.

Return type str

class featureselection.PriorKnowledgeSelector(name, knowledgebase)
Bases: featureselection.FeatureSelector

Super class for all prior knowledge approaches. If you want to implement an own prior knowledge approach
that uses a knowledge base (but not a second selector and no network approaches), inherit from this class.

Parameters

• knowledgebase (knowledgebases.KnowledgeBase or inheriting class) – in-
stance of a knowledge base.

• alternativeSearchTerms (list of str) – list of alternative search terms to
use for querying the knowledge base.

selectFeatures()
Abstract. Implement this method when inheriting from this class.

Returns absolute path to the output ranking file.

9.4. featureselection module 57

Comprior Documentation

Return type str

collectAlternativeSearchTerms()
Gets all alternative search terms that were specified in the config file and put them into a list.

Returns list of alternative search terms to use for querying the knowledge base.

Return type list of str

getSearchTerms()
Gets all search terms to use for querying a knowledge base. Search terms that will be used are a) the class
labels in the dataset, and b) the alternative search terms that were specified in the config file.

Returns list of search terms to use for querying the knowledge base.

Return type list of str

getName()
Returns the full name (including applied knowledge base) of this selector.

Returns selector name.

Return type str

class featureselection.CombiningSelector(name, knowledgebase, tradApproach)
Bases: featureselection.PriorKnowledgeSelector

Super class for prior knoweldge approaches that use a knowledge base AND combine it with any kind of selector,
e.g. a traditional approach. Inherit from this class if you want to implement a feature selector that requires both
a knowledge base and another selector, e.g. because it combines information from both.

Parameters

• knowledgebase (knowledgebases.KnowledgeBase or inheriting class) – in-
stance of a knowledge base.

• tradApproach (FeatureSelector) – any feature selector implementation to use
internally, e.g. a traditional approach like ANOVA

selectFeatures()
Abstract. Implement this method as desired when inheriting from this class.

Returns absolute path to the output ranking file.

Return type str

getName()
Returns the full name (including applied knowledge base and feature selector) of this selector.

Returns selector name.

Return type str

getExternalGenes()
Gets all genes related to the provided search terms from the knowledge base.

Returns list of gene names.

Return type list of str

class featureselection.NetworkSelector(name, knowledgebase, featuremapper)
Bases: featureselection.PriorKnowledgeSelector

Abstract. Inherit from this method if you want to implement a new network approach that actually con-
ducts feature EXTRACTION, i.e. maps the original data set to have pathway/subnetworks. Instead

58 Chapter 9. Python Code Documentation

Comprior Documentation

of FeatureSelector.selectFeatures() implement NetworkSelector.selectPathways()
when inheriting from this class.

Instances of NetworkSelector and inheriting classes also require a PathwayMapper object that transfers
the dataset to the new feature space. Custom implementations thus need to implement a) a selection strategy to
select pathways and b) a mapping strategy to compute new feature values for the selected pathways.

Parameters featureMapper (FeatureMapper or inheriting class) – feature mapping object
that transfers the feature space.

selectPathways(pathways)
Selects the pathways that will become the new features of the data set. Implement this method (instead of
FeatureSelector.selectFeatures() when inheriting from this class.

Parameters pathways (dict) – dict of pathways (pathway names as keys) to select from.

Returns pathway ranking as dataframe

Return type pandas.DataFrame

writeMappedFile(mapped_data, fileprefix)
Writes the mapped dataset with new feature values to the same directory as the original file is located (it
will be automatically processed then).

Parameters

• mapped_data (pandas.DataFrame) – dataframe containing the dataset with
mapped feature space.

• fileprefix (str) – prefix of the file name, e.g. the directory path

Returns absolute path of the file name to store the mapped data set.

Return type str

getName()
Gets the selector name (including the knowledge base).

Returns selector name.

Return type str

filterPathways(pathways)

selectFeatures()
Instead of selecting existing features, instances of NetworkSelector select pathways or submodules
as features. For that, it first queries its knowledge base for pathways. It then selects the top k pathways
(strategy to be implemented in NetworkSelector.selectPathways()) and subsequently maps
the dataset to its new feature space. The mapping will be conducted by an object of PathwayMapper
or inheriting classes. If a second dataset for cross-validation is available, the feature space of this dataset
will also be transformed.

Returns absolute path to the pathway ranking.

Return type str

class featureselection.RandomSelector
Bases: featureselection.FeatureSelector

Baseline Selector: Randomly selects any features.

selectFeatures()
Randomly select any features from the feature space. Assigns a score of 0.0 to every feature

Returns absolute path to the ranking file.

9.4. featureselection module 59

Comprior Documentation

Return type str

class featureselection.AnovaSelector
Bases: featureselection.PythonSelector

Runs ANOVA feature selection using scikit-learn implementation

runSelector(data, labels)
Runs the ANOVA feature selector of scikit-learn. Is invoked by PythonSelector.
selectFeatures().

Parameters

• data (pandas.DataFrame) – dataframe containing the unlabeled dataset.

• labels (list of int) – numerically encoded class labels.

Returns sklearn/mlxtend selector that ran the selection (containing coefficients etc.).

class featureselection.Variance2Selector
Bases: featureselection.PythonSelector

Runs variance-based feature selection using scikit-learn.

prepareOutput(outputFile, data, selector)
Transforms the selector output to a valid ranking and stores it into the specified file. We need to override
this method because variance selector has no attribute scores but variances.

Parameters

• outputFile (str) – absolute path of the file to which to write the ranking.

• data (pandas.DataFrame) – input dataset.

• selector – selector object from scikit-learn.

runSelector(data, labels)
Runs the actual variance-based feature selector of scikit-learn. Is invoked by PythonSelector.
selectFeatures().

Parameters

• data (pandas.DataFrame) – dataframe containing the unlabeled dataset.

• labels (list of int) – numerically encoded class labels.

Returns sklearn/mlxtend selector that ran the selection (containing coefficients etc.).

class featureselection.MRMRSelector
Bases: featureselection.RSelector

Runs maximum Relevance minimum Redundancy (mRMR) feature selection using the mRMRe R implemen-
tation: https://cran.r-project.org/web/packages/mRMRe/index.html Actually a wrapper class for invoking the R
code.

Parameters

• scriptName (str) – name of the R script to invoke.

• maxFeatures (int) – maximum number of features to select. Currently all features
(=0) are ranked..

createParams(outputFile)
Sets the parameters the R script requires (input file, output file, maximum number of features).

Returns list of parameters to use for mRMR execution in R.

60 Chapter 9. Python Code Documentation

https://cran.r-project.org/web/packages/mRMRe/index.html

Comprior Documentation

Return type list of str

class featureselection.VarianceSelector
Bases: featureselection.RSelector

Runs variance-based feature selection using R genefilter library. Actually a wrapper class for invoking the R
code.

Parameters scriptName (str) – name of the R script to invoke.

createParams(outputFile)
Sets the parameters the R script requires (input file, output file).

Parameters outputFile (str) – absolute path to the output file that will contain the rank-
ing.

Returns list of parameters to use for mRMR execution in R.

Return type list of str

class featureselection.InfoGainSelector
Bases: featureselection.JavaSelector

Runs InfoGain feature selection as provided by WEKA: https://www.cs.waikato.ac.nz/ml/weka/ Actually a
wrapper class for invoking java code.

createParams()
Sets the parameters the java program requires (input file, output file, selector name).

Returns list of parameters to use for InfoGain execution in java.

Return type list of str

class featureselection.ReliefFSelector
Bases: featureselection.JavaSelector

Runs ReliefF feature selection as provided by WEKA: https://www.cs.waikato.ac.nz/ml/weka/ Actually a wrap-
per class for invoking java code.

createParams()
Sets the parameters the java program requires (input file, output file, selector name).

Returns list of parameters to use for InfoGain execution in java.

Return type list of str

class featureselection.KbSelector(knowledgebase)
Bases: featureselection.PriorKnowledgeSelector

Knowledge base selector. Selects features exclusively based the information retrieved from a knowledge base.

Parameters knowledgebase (knowledgebases.KnowledgeBase) – instance of a
knowledge base.

updateScores(entry, newGeneScores)
Updates a score entry with the new score retrieved from the knowledge base. Used by apply function.

Parameters

• entry (pandas.Series) – a gene score entry consisting of the gene name and its
score

• newGeneScores (pandas.DataFrame) – dataframe containing gene scores re-
trieved from the knowledge base.

Returns updated series element.

9.4. featureselection module 61

https://www.cs.waikato.ac.nz/ml/weka/
https://www.cs.waikato.ac.nz/ml/weka/

Comprior Documentation

Return type pandas.Series

selectFeatures()
Does the actual feature selection. Retrieves association scores for genes from the knowledge base based
on the given search terms.

Returns absolute path to the resulting ranking file.

Return type str

class featureselection.KBweightedSelector(knowledgebase, tradApproach)
Bases: featureselection.CombiningSelector

Selects features based on association scores retrieved from the knowledge base and the relevance score retrieved
by the (traditional) approach. Computes the final score via tradScore * assocScore.

Parameters

• knowledgebase (knowledgebases.KnowledgeBase or inheriting class) – in-
stance of a knowledge base.

• tradApproach (FeatureSelector) – any feature selector implementation to use
internally, e.g. a traditional approach like ANOVA

updateScores(entry, newGeneScores)
Updates a score entry with the new score retrieved from the knowledge base. Used by apply function.

Parameters

• entry (pandas.Series) – a gene score entry consisting of the gene name and its
score

• newGeneScores (pandas.DataFrame) – dataframe containing gene scores re-
trieved from the knowledge base.

Returns updated series element.

Return type pandas.Series

getName()
Gets the selector name (including the knowledge base and (traditional) selector).

Returns selector name.

Return type str

computeStatisticalRankings(intermediateDir)
Computes the statistical relevance score of all features using the (traditional) selector.

Parameters intermediateDir (str) – absolute path to output directory for (traditional)
selector (where to write the statistical rankings).

Returns dataframe with statistical ranking.

Return type pandas.DataFrame

computeExternalRankings()
Computes the association scores for every gene using the knowledge base. Genes for which no entry
could be found receive a default score of 0.000001.

Returns dataframe with statistical ranking.

Return type pandas.DataFrame

62 Chapter 9. Python Code Documentation

Comprior Documentation

combineRankings(externalRankings, statisticalRankings)
Combines score rankings from both the knowledge base and the (traditional) selector (kb_score *
trad_score) to retrieve a final score for every gene.

Parameters

• externalRankings (pandas.DataFrame) – dataframe with ranking from
knowledge base.

• statisticalRankings (pandas.DataFrame) – dataframe with statistical
ranking.

Returns dataframe with final combined ranking.

Return type pandas.DataFrame

selectFeatures()
Runs the feature selection process. Retrieves scores from knowledge base and (traditional) selector and
combines these to a single score.

Returns absolute path to final output file containing the ranking.

Return type str

class featureselection.LassoPenalty(knowledgebase)
Bases: featureselection.PriorKnowledgeSelector, featureselection.RSelector

Runs feature selection by invoking xtune R package: https://cran.r-project.org/web/packages/xtune/index.html

xtune is a Lasso selector that uses feature-individual penalty scores. These penalty scores are retrieved from the
knowledge base.

selectFeatures()
Triggers the feature selection. Actually a wrapper method that invokes external R code.

Returns absolute path to the result file containing the ranking.

Return type str

getName()
Returns the full name (including applied knowledge base) of this selector.

Returns selector name.

Return type str

createParams(outputFile)
Sets the parameters the xtune R script requires (input file, output file, filename containing rankings from
knowledge base).

Returns list of parameters to use for xtune execution in R.

Return type list of str

computeExternalRankings()
Computes the association scores for each feature based on the scores retrieved from the knowledge base.
Features that could not be found in the knowledge base receive a default score of 0.000001.

Returns absolute path to the file containing the external rankings.

Return type str

class featureselection.WrapperSelector(name)
Bases: featureselection.PythonSelector

9.4. featureselection module 63

https://cran.r-project.org/web/packages/xtune/index.html

Comprior Documentation

Selector implementation for wrapper selectors using scikit-learn. Currently implements recursive feature elimi-
natin (RFE) and sequential forward selection (SFS) strategies, which can be combined with nearly any classifier
offered by scikit-learn, e.g. SVM.

Parameters

• selector – scikit-learn selector strategy (currently RFE and SFS)

• classifier – scikit-learn classifier to use for wrapper selection.

createClassifier()
Creates a classifier instance (from scikit-learn) to be used during the selection process. To enable the
framework to use a new classifier, extend this method accordingly.

Returns scikit-learn classifier instance.

createSelector()
Creates a selector instance that leads the selection process. Currently, sequential forward selection (SFS)
and recursive feature elimination (RFE) are implemented. Extend this method if you want to add another
selection strategy.

Returns scikit-learn selector instance.

prepareOutput(outputFile, data, selector)
Overwrites the inherited prepareOutput method because we need to access the particular selector’s coef-
ficients. The coefficients are extracted as feature scores and will be written to the rankings file.

Parameters

• outputFile (str) – selector name

• data (pandas.DataFrame) – input dataset to get the feature names.

• selector – selector instance that is used during feature selection.

runSelector(data, labels)
Runs the actual feature selector of scikit-learn. Is invoked by PythonSelector.
selectFeatures().

Parameters

• data (pandas.DataFrame) – dataframe containing the unlabeled dataset.

• labels (list of int) – numerically encoded class labels.

Returns sklearn/mlxtend selector that ran the selection (containing coefficients etc.).

class featureselection.SVMRFESelector
Bases: featureselection.JavaSelector

Executes SVM-RFE with poly-kernel. Uses an efficient java implementation from WEKA and is thus just a
wrapper class to invoke the corresponding jars.

createParams()
Sets the parameters the java program requires (input file, output file, selector name).

Returns list of parameters to use for InfoGain execution in java.

Return type list of str

class featureselection.RandomForestSelector
Bases: featureselection.PythonSelector

Selector class that implements RandomForest as provided by scikit-learn.

64 Chapter 9. Python Code Documentation

Comprior Documentation

prepareOutput(outputFile, data, selector)
Overwrites the inherited prepareOutput method because we need to access the RandomForest selector’s
feature importances. These feature importances are extracted as feature scores and will be written to the
rankings file.

Parameters

• outputFile (str) – selector name

• data (pandas.DataFrame) – input dataset to get the feature names.

• selector – RandomForest selector instance that is used during feature selection.

runSelector(data, labels)
Runs the actual feature selection using scikit-learn’s RandomForest classifier. Is invoked by
PythonSelector.selectFeatures().

Parameters

• data (pandas.DataFrame) – dataframe containing the unlabeled dataset.

• labels (list of int) – numerically encoded class labels.

Returns scikit-learn RandomForestClassifier that ran the selection.

class featureselection.LassoSelector
Bases: featureselection.PythonSelector

Selector class that implements Lasso feature selection using scikit-learn.

prepareOutput(outputFile, data, selector)
Overwrites the inherited prepareOutput method because we need to access Lasso’s coefficients. These
coefficients are extracted as feature scores and will be written to the rankings file.

Parameters

• outputFile (str) – selector name

• data (pandas.DataFrame) – input dataset to get the feature names.

• selector – RandomForest selector instance that is used during feature selection.

runSelector(data, labels)
Runs the actual Lasso feature selector using scikit-learn. Is invoked by PythonSelector.
selectFeatures().

Parameters

• data (pandas.DataFrame) – dataframe containing the unlabeled dataset.

• labels (list of int) – numerically encoded class labels.

Returns Lasso selector that ran the selection.

class featureselection.PreFilterSelector(knowledgebase, tradApproach)
Bases: featureselection.CombiningSelector

Applies a two-level prefiltering strategy for feature selection. Filters all features that were not retrieved by a
knowledge base based on the search terms provided in the config file. Applies a (traditional) feature selector on
the remaining features afterwards.

For traditional univariate filter approaches, the results retrieved by this class and PostFilterSelector will
be the same.

selectFeatures()
Carries out feature selection. First queries the assigned knowledge base to get genes that are associated to

9.4. featureselection module 65

Comprior Documentation

the given search terms. Filter feature set of input data set to contain only features that are in the retrieved
gene set. Apply (traditional) selector on the filtered data set.

Returns absolute path to rankings file.

Return type str

class featureselection.PostFilterSelector(knowledgebase, tradApproach)
Bases: featureselection.CombiningSelector

Applies a two-level postfiltering strategy for feature selection. Applies (traditional) feature selection to the input
data set. Afterwards, removes all genes for which no information in the corresponding knowledge base was
found based on the search terms provided in the config file. For traditional univariate filter approaches, the
results retrieved by this class and PreFilterSelector will be the same.

selectFeatures()
Carries out feature selection. First executes (traditional) selector. Then queries the assigned knowledge
base to get genes that are associated to the given search terms. Finally filters feature set to contain only
features that are in the retrieved gene set.

Returns absolute path to rankings file.

Return type str

class featureselection.ExtensionSelector(knowledgebase, tradApproach)
Bases: featureselection.CombiningSelector

Selector implementation inspired by SOFOCLES: “SoFoCles: Feature filtering for microarray classification
based on Gene Ontology”, Papachristoudis et al., Journal of Biomedical Informatics, 2010

This selector carries out (traditional) feature selection and in parallel retrieves relevant genes from a knowledge
base based on the provided search terms. The ranking is then adapted by alternating the feature ranking retrieved
by the (traditiona) selection approach and the externally retrieved genes. This is kind of related to an extension
approach, where a feature ranking that was retrieved by a traditional approach is extended by such external
genes.

selectFeatures()
Carries out feature selection. Executes (traditional) selector and separately retrieves genes from the as-
signed knowledge base based on the search terms specified in the config. Finally merges the two feature
lists alternating to form an “extended” feature ranking.

Returns absolute path to rankings file.

Return type str

class featureselection.NetworkActivitySelector(knowledgebase, featuremapper)
Bases: featureselection.NetworkSelector

Selector implementation that selects a set of pathways from the knowledge base and maps the feature space to
the pathways. Pathway ranking scores are computed based on the average ANOVA p-value of its member genes
and the sample classes. This method is also used by Chuang et al. and Tian et al. (Discovering statistically
significant pathways in expression profiling studies) Pathway feature values are computed with an instance
of FeatureMapper or inheriting classes, whose mapping strategies can vary. If pathways should be selected
according to another strategy, use this class as an example implementation to implement a new class that inherits
from NetworkSelector.

selectPathways(pathways)
Computes a pathway ranking for the input pathways. Computes a pathway score based on the average
ANOVA’s f-test p-values of a pathway’s member genes and the sample classes.

Parameters pathways (str) – selector name

Returns pathway ranking with pathway scores

66 Chapter 9. Python Code Documentation

Comprior Documentation

Return type pandas.DataFrame

class featureselection.FeatureMapper
Bases: object

Abstract. Inherit from this class and implement FeatureMapper.mapFeatures() to implement a new
mapping strategy. Maps the feature space of the given input data to a given set of pathways. Computes a new
feature value for every feature and sample based on the implemented strategy.

mapFeatures(original_data, pathways)
Abstract method. Implement this method when inheriting from this class. Carries out the actual feature
mapping.

Parameters

• original_data (pandas.DataFrame) – the original data set of which to map
the feature space.

• pathways (dict) – dict of pathway names as keys and corresponding pathway
pypath.Network objects as values

Returns the transformed data set with new feature values

Return type pandas.DataFrame

getUnlabeledData(dataset)
Removes the labels from the data set.

Parameters dataset (pandas.DataFrame) – data set from which to remove the labels.

Returns data set without labels.

Return type pandas.DataFrame

getLabels(dataset)
Gets the dataset labels.

Parameters dataset (pandas.DataFrame) – data set from which to extract the labels.

Returns label vector of the data set.

Return type pandas.Series

getFeatures(dataset)
Gets the features of a data set.

Parameters dataset (pandas.DataFrame) – data set from which to extract the fea-
tures.

Returns feature vector of the data set.

Return type pandas.Series

getSamples(dataset)
Gets all samples in a data set.

Parameters dataset (pandas.DataFrame) – data set from which to extract the sam-
ples.

Returns list of samples from the data set.

Return type list

getPathwayGenes(pathway, genes)
Returns the intersection of a given set of genes and the genes contained in a given pathway.

Parameters

9.4. featureselection module 67

Comprior Documentation

• pathway (pypath.Network) – pathway object from which to get the genes.

• genes (list of str) – list of gene names.

Returns list of genes that are contained in both the pathway and the gene list.

Return type list of str

class featureselection.CORGSActivityMapper
Bases: featureselection.FeatureMapper

Pathway mapper that implements the strategy described by Lee et al.: “Inferring Pathway Activity toward
Precise Disease Classification” Identifies CORGS genes for every pathway: uses random search to find the
minimal set of genes for which the pathway activity score is maximal. First, every sample receives an activity
score, which is the average expression level of the (CORGS) genes / number of genes. The computed activity
scores are then used for f-testing with the class labels, and the p-values are the new pathway feature values.
These steps are executed again and again until the p-values are not decreasing anymore.

getANOVAscores(data, labels)
Applies ANOVA f-test to test the association/correlation of a feature (pathway) with a given label. The
feature has activity scores (computed from CORGS genes) for every sample, which are to be tested for
the labels.

Parameters

• data (pandas.DataFrame) – the data set which to test for correlation with the
labels (typically feature scores of a pathway for samples).

• labels (pandas.Series) – class labels to use for f-test.

Returns series of p-values for every sample.

Return type pandas.Series

computeActivityScore(sampleExpressionLevels)
Computes the activity score of a given set of genes for a specific sample. The activity score of a sample
is the mean expression value of the given genes divided by the overall number of given genes.

Parameters sampleExpressionLevels (pandas.DataFrame) – data set containing
expression levels from a given set of genes for samples.

Returns activity scores for the given samples.

Return type pandas.Series

computeActivityVector(expressionLevels)
Computes the activity score of a given set of genes for a all samples.

Parameters expressionLevels (pandas.DataFrame) – input data set of expression
levels for a given set of (CORGS) genes.

Returns instance of a feature selector implementation.

Return type pandas.DataFrame or inheriting class

mapFeatures(original_data, pathways)
Carries out the actual feature mapping. Follows the strategy described by Lee et al.: “Inferring Pathway
Activity toward Precise Disease Classification” Identifies CORGS genes for every pathway: uses random
search to find the minimal set of genes for which the pathway activity score is maximal. First, every
sample receives an activity score, which is the average expression level of the (CORGS) genes / number
of genes. The computed activity scores are then used for f-testing with the class labels, and the p-values
are the new pathway feature values. These steps are executed again and again until the p-values are not
decreasing anymore.

68 Chapter 9. Python Code Documentation

Comprior Documentation

Parameters

• original_data (pandas.DataFrame) – the original data set of which to map
the feature space.

• pathways (dict) – dict of pathway names as keys and corresponding pathway
pypath.Network objects as values

Returns the transformed data set with new feature values

Return type pandas.DataFrame

class featureselection.PathwayActivityMapper
Bases: featureselection.FeatureMapper

Pathway mapper that implements a strategy that is related to Vert and Kanehisa’s strategy: Vert, Jean-Philippe,
and Minoru Kanehisa. “Graph-driven feature extraction from microarray data using diffusion kernels and kernel
CCA.” NIPS. 2002. Computes pathway activity scores for every sample and pathway as new feature values.
The feature value is the average of: expression level weighted by gene variance and neighbor correlation score)

getAverageCorrelation(correlations, gene, neighbors)
Computes the average correlation from the correlations of a given gene and its neighbors.

Parameters

• correlations (pandas.DataFrame) – correlation matrix of all genes.

• gene (str) – gene name whose average neighbor correlation to compute.

• neighbors (list of str) – list of gene names that are neighbors of the given
gene.

Returns average correlation value.

Return type float

computeGeneVariances(data)
Computes the variances for every gene across all samples.

Parameters data (pandas.DataFrame) – data set with expression values.

Returns variance for every gene.

Return type pandas.Series

mapFeatures(original_data, pathways)
Executes the actual feature mapping procedure. A feature value is the average of (for every gene in a
pathway): (expression level weighted by gene variance and neighbor correlation score)

Parameters

• original_data (pandas.DataFrame) – the original data set of which to map
the feature space.

• pathways (dict) – dict of pathway names as keys and corresponding pathway
pypath.Network objects as values

Returns the transformed data set with new feature values

Return type pandas.DataFrame

9.4. featureselection module 69

Comprior Documentation

9.5 knowledgebases module

Contains all classes related to knowledge bases. A knowledge base is realized with two classes: * A class inheriting
from knowledgebases.KnowledgeBase and implementing the three interface methods knowledgebases.
KnowledgeBase:getRelevantGenes(), knowledgebases.KnowledgeBase:getGeneScores(),
and knowledgebases.KnowledgeBase:getRelevantPathways(). * A class that is responsible for
querying the corresponding web service and inherits from Bioservice’s REST class. Those knowledge bases that
retrieve pathway information also need an additional PathwayMapper class, which transforms the original pathway re-
sults from the knowledge base (which can range from SIF to any other pathway specification format) into the pathway
representation that is used throughout Comprior. For Comprior’s internal pathway representation, we use pypath.

The creation of knowledge bases is encapsulated by the class knowledgebase.KnowledgeBaseFactory that
takes care that every knowledge base is equipped with a web service querying class and, if needed, the right type of
knowledgebase.PathwayMapper. For a detailed look at the class architecture, have a look at ADD CLASS
ARCHITECTURE LINK HERE.

knowledgebases.suppress_stdout(suppress=True)

class knowledgebases.ENRICHR
Bases: bioservices.services.REST

Queries some of the API endpoints of the EnrichR web service (https://maayanlab.cloud/Enrichr/help#api).

Parameters config (dict) – configuration parameters for EnrichR web service (as specified in
config file).

addlist(geneList)
Queries EnrichR to annotate a given list of genes. Returns a userListID, which can be used to retrieve the
actual results in a second query.

Parameters geneList – list of genes to annotate

Returns json response containing a userListID.

Return type dict of str

export(params)
Download file of enrichment results. Requires a userListId that was retrieved from a prior query.

Parameters params (list of str) – list of parameters to use for that query (userListId:
Identifier returned from addList endpoint, filename: Name of text file download, back-
groundType: Gene set library for which to download results)

Returns text file containing enrichment results.

Return type str

genemap(params)
Finds all terms, their descriptions, and optional categorizations, for a given gene identifier.

Parameters params (list of str) – list of parameters to be used for the query (gene
Gene to use in search for terms, json (optional): Set “true” to return JSON rather plaintext,
setup (optional): Set “true” to category information for the libraries)

Returns json object of all terms containing the specified gene and their descriptions.

Return type dict of str

enrich(params)
Returns all that are terms available in library (specified by backgroundType param) and enriched in the
given set of genes (specified by userListId param).

70 Chapter 9. Python Code Documentation

https://maayanlab.cloud/Enrichr/help#api

Comprior Documentation

Parameters params (list of str) – list of parameters to be used for the query (userLis-
tId: Identifier returned from addList endpoint; backgroundType: Gene set library to enrich
against)

Returns dataframe object of all enriched terms (unsorted, unfiltered.

Return type dataframe

class knowledgebases.UMLS_AUTH
Bases: bioservices.services.REST

Singleton class. Python code encapsulates it in a way that is not shown in Sphinx, so have a look at the descrip-
tions in the source code.

Authentication service to get access to the UMLS database UMLS database (which we need for retrieving CUI
disease codes for querying DisGeNET). You first have to get a ticket-granting ticket (tgt, valid for 8 hours) with
the help of an API key. With the tgt, you can then request a service ticket for every new query to the UMLS
database. The service ticket must then be used for the query. The task of this class is to generate a valid tgt and
subsequent service ticket. Documentation on the authentication process: https://documentation.uts.nlm.nih.gov/
rest/authentication.html

Parameters

• config (dict) – configuration parameters for UMLS web service as specified in config
file.

• tgt_timestamp (str) – timestamp of the tgt. If it is older than 8 hours, we need to
request a new tgt.

• tgt (list of str) – id of the ticket-granting ticket (valid for 8 hours). With this
ticket, we can then query the actual UMLS web service.

• service (str) – uri for the service login

instance = None

class knowledgebases.UMLS
Bases: bioservices.services.REST

Retrieves UMLS CUI codes for labels, which can then be used for querying DisGeNET.

Parameters

• config (dict) – configuration parameters for UMLS web service (as specified in con-
figuration file).

• auth (UMLS_AUTH) – authentication component to generate a valid service ticket (re-
quired for every query).

getCUIs(labels)
Get CUIs for the given labels.

Parameters labels (list of str) – list of identifiers for which to retrieve CUIs, e.g.
disease names.

Returns list of CUIs.

Return type list of str

class knowledgebases.DISGENET
Bases: bioservices.services.REST

Queries the DisGeNET web service for a given set of labels and retrieves association scores for all genes related
to the query labels. DisGeNET API documentation: https://www.disgenet.org/api/

9.5. knowledgebases module 71

https://documentation.uts.nlm.nih.gov/rest/authentication.html
https://documentation.uts.nlm.nih.gov/rest/authentication.html
https://www.disgenet.org/api/

Comprior Documentation

Parameters umls (UMLS for transforming disease names to CUIs (required for query)) – list of
gene names to be mapped

getVersion()
Get the current version of the DisGeNET API endpoint.

Returns web service version infos.

Return type json dict

query(labels)
Conducts the actual query to retrive gene-disease association scores for a given list of disease labels.
Transforms the disease labels into CUIs before with the UMLS web service.

Parameters labels (list of str) – list of disease labels for which to retrieve gene-
disease associations.

Returns DataFrame with gene-disease association scores.

Return type pandas.DataFrame

class knowledgebases.GCONVERT
Bases: object

Queries the g:Convert web service to map a list of identifiers to a desired format. g:Convert makes use of the
Ensembl build. g:Convert API documentation: https://biit.cs.ut.ee/gprofiler/page/apis

Parameters url (str) – API url as specified in the configuration file.

query(items, originalFormat, desiredFormat)
Map a list of itendifiers to the desired format.

Parameters

• items (list of str) – list of identifiers to be mapped

• originalFormat (str) – current format of the identifiers

• desiredFormat (str) – desired identifier format

Returns DataFrame containing the identifier mapping.

Return type pandas.DataFrame

class knowledgebases.PATHWAYCOMMONSWS
Bases: bioservices.services.REST

Queries the PathwayCommons web service. Bioservices’ existing implementation to query PathwayCommons
was not used because it contained outdated values for _valid_formats for pathway retrieval, so we used the
original code and adapted it to work correctly.

getVersion()
Map a list of genes to the desired format.

Parameters genes (list of str) – list of gene names to be mapped

Returns list of mapped gene names.

Return type list of str

default_extension
set extension of the requests (default is json). Can be ‘json’ or ‘xml’

search(q, page=0, datasource=None, organism=None, type=None)
Text search in PathwayCommons using Lucene query syntax

Some of the parameters are BioPAX properties, others are composite relationships.

72 Chapter 9. Python Code Documentation

Comprior Documentation

All index fields are (case-sensitive): comment, ecnumber, keyword, name, pathway, term, xrefdb, xrefid,
dataSource, and organism.

The pathway field maps to all participants of pathways that contain the keyword(s) in any of its text fields.

Finally, keyword is a transitive aggregate field that includes all searchable keywords of that element and
its child elements.

All searches can also be filtered by data source and organism.

It is also possible to restrict the domain class using the ‘type’ parameter.

This query can be used standalone or to retrieve starting points for graph searches.

Parameters

• q (str) – requires a keyword , name, external identifier, or a Lucene query string.

• page (int) – (N>=0, default is 0), search result page number.

• datasource (str) – filter by data source (use names or URIs of pathway data
sources or of any existing Provenance object). If multiple data source values are spec-
ified, a union of hits from specified sources is returned. datasource=[reactome,pid]
returns hits associated with Reactome or PID.

• organism (str) – The organism can be specified either by official name, e.g.
“homo sapiens” or by NCBI taxonomy id, e.g. “9606”. Similar to data sources, if
multiple organisms are declared a union of all hits from specified organisms is re-
turned. For example organism=[9606, 10016] returns results for both human and
mice.

• type (str) – BioPAX class filter

get(uri, frmt=’BIOPAX’)
Retrieves full pathway information for a set of elements

elements can be for example pathway, interaction or physical entity given the RDF IDs. Get commands
only retrieve the BioPAX elements that are directly mapped to the ID. Use the traverse() query to
traverse BioPAX graph and obtain child/owner elements.

Parameters

• uri (str) – valid/existing BioPAX element’s URI (RDF ID; for utility classes
that were “normalized”, such as entity refereneces and controlled vocabularies, it
is usually a Identifiers.org URL. Multiple IDs can be provided using list uri=[http://
identifiers.org/uniprot/Q06609, http://identifiers.org/uniprot/Q549Z0’] See also about
MIRIAM and Identifiers.org.

• format (str) – output format (values)

Returns a complete BioPAX representation for the record pointed to by the given URI is
returned. Other output formats are produced by converting the BioPAX record on demand
and can be specified by the optional format parameter. Please be advised that with some
output formats it might return “no result found” error if the conversion is not applicable
for the BioPAX result. For example, BINARY_SIF output usually works if there are some
interactions, complexes, or pathways in the retrieved set and not only physical entities.

class knowledgebases.KnowledgeBaseFactory
Bases: object

Singleton class. Python code encapsulates it in a way that is not shown in Sphinx, so have a look at the descrip-
tions in the source code.

9.5. knowledgebases module 73

http://identifiers.org/uniprot/Q06609
http://identifiers.org/uniprot/Q06609
http://identifiers.org/uniprot/Q549Z0

Comprior Documentation

Creates knowledge bases based on the provided name and creates all corresponding objects, e.g. web service
endpoints. Every knowledge base implementation must be registered here, otherwise it will not be accessible.

instance = None

class knowledgebases.KnowledgeBase(name, kb_config, webservice, geneInfo, pathwayInfo)
Bases: object

Super class for every knowledge base implementation. If a new knowledge base is implemented, it must inherit
from this class and implement methods KnowledgeBase.getRelevantGenes(), KnowledgeBase.
getGeneScores(), and KnowledgeBase.getRelevantPathways().

Parameters

• name (str) – name of the knowledge base

• config (dict) – configuration parameter of the knowledge base as specified in the
config file.

• webservice (bioservices.REST or inheriting classes.) – web service querying
object

• hasGeneInformation (bool) – true if the knowledge base provides gene associa-
tion information, false otherwise

• hasPathwayInformation (bool) – true if the knowledge base also provides path-
way information, false otherwise

getRelevantGenes(labels)
Abstract. Get all genes that are associated to a list of labels, e.g. disease names.

Parameters labels (list of str) – list of labels for which to retrieve the genes.

Returns list of associated genes.

Return type list of str

getGeneScores(labels)
Abstract. Get all genes and their association scores for a given list of disease names.

Parameters labels (list of str) – list of disease names for which to get gene-disease-
association scores.

Returns DataFrame of genes and their association scores.

Return type pandas.DataFrame

getRelevantPathways(labels)
Get all pathways related to a set of labels, e.g disease names.

Parameters labels (list of str) – list of labels for which to find related pathways.

Returns dict of pathway names and pathway representations.

Return type dict with pypath.Network as values

getName()
Returns the name of the knowledge base.

Returns knowledge base name.

Return type str

hasPathways()
Returns if knowledge base retrieves pathway information, i.e. if KnowledgeBase.
getRelevantPathways() is implemented..

74 Chapter 9. Python Code Documentation

Comprior Documentation

Returns true if knowledge base provides pathway information, false otherwise.

Return type bool

hasGenes()
Returns if knowledge base retrieves gene information, i.e. if KnowledgeBase.
getRelevantGenes() KnowledgeBase.getGeneScores() are implemented.

Returns true if knowledge base provides gene information, false otherwise.

Return type bool

class knowledgebases.Enrichr
Bases: knowledgebases.KnowledgeBase

Special knowledge base not intended to be used by feature selection approaches. Instead, it is used for evaluation
purposes to annotate and enrich rankings.

Parameters

• name (str) – name of the knowledge base

• config (dict) – configuration parameter of the knowledge base as specified in the
config file.

• webservice (bioservices.REST or inheriting classes.) – web service querying
object

• hasGeneInformation (bool) – true if the knowledge base provides gene associa-
tion information, false otherwise

• hasPathwayInformation (bool) – true if the knowledge base also provides path-
way information, false otherwise

downloadEnrichedTerms(userIdList, filePrefix)
Downloads enriched terms from a former query into a file. Filters these terms for those with an adjusted
p-value > 0.05, then sorts by combined score in descending order.

Parameters

• userIdList (str) – userIdList to retrieve enrichment/annotation results from the
original query.

• filePrefix (str) – prefix to use in filename.

getRelevantGenes(labels)
Is not implemented for EnrichR.

Parameters labels (list of str) – list of gene names to be mapped

Returns NotImplementedError as this knowledge base is not intended to be used for
such analyses.

Return type NotImplementedError

getGeneScores(labels)
Is not implemented for EnrichR.

Parameters labels (list of str) – list of gene names to be mapped

Returns NotImplementedError as this knowledge base is not intended to be used for
such analyses.

Return type NotImplementedError

9.5. knowledgebases module 75

Comprior Documentation

getRelevantPathways(labels)
Is not implemented for EnrichR.

Parameters labels (list of str) – list of labels for which to find related pathways.

Returns NotImplementedError as this knowledge base is not intended to be used for
such analyses.

Return type NotImplementedError

enrichGeneset(geneList, filePrefix)
Sends a list of identifies (here, genes) to EnrichR web service and stores all term enrichments in a file.

Parameters

• geneList (list of str) – list of gene names for which to retrieve enrichments.

• filePrefix (str) – prefix to use in file name (to store enrichments).

annotateGene(gene)
Annotates a gene with terms.

Parameters gene (str) – gene name.

Returns list of all annotations to the provided gene.

Return type list of str

annotateGenes(geneList, filePrefix)
Annotates a list of genes with relevant terms.

Parameters

• geneList (list of str) – list of gene names to annotate.

• filePrefix (str) – prefix to use when storing results in a file.

Returns dict of gene names and lists of their annotations.

Return type dict

class knowledgebases.BioMART
Bases: object

Maps a identifiers or data sets with identifiers to the desired format by using BiomaRt. Wrapper class that
internally invokes BiomaRt’s R code. Very unstable, so currently not used. However, it can be exchanged in
benchutils.retrieveMappings() function.

mapItems(itemList, originalFormat, desiredFormat)
Map a list of identifiers to the desired format. Internally invokes external R code that uses the BiomaRt
package.

Parameters

• itemList (list of str) – list of identifiers to be mapped

• originalFormat (str) – original identifier format.

• desiredFormat (str) – format to which to map identifiers.

Returns mapping data frame of identifiers (with original and desired format)

Return type pandas.DataFrame

getRelevantGenes(labels)
Is not implemented for BiomaRt.

Parameters labels (list of str) – list of gene names to be mapped

76 Chapter 9. Python Code Documentation

Comprior Documentation

Returns NotImplementedError as this knowledge base is not intended to be used for
such analyses.

Return type NotImplementedError

getGeneScores(labels)
Is not implemented for BiomaRt.

Parameters labels (list of str) – list of gene names to be mapped

Returns NotImplementedError as this knowledge base is not intended to be used for
such analyses.

Return type NotImplementedError

getRelevantPathways(labels)
Is not implemented for BiomaRt.

Parameters labels (list of str) – list of labels for which to find related pathways.

Returns NotImplementedError as this knowledge base is not intended to be used for
such analyses.

Return type NotImplementedError

class knowledgebases.Gconvert
Bases: knowledgebases.KnowledgeBase

Maps identifiers or data sets containing identifiers to the desired format by using the g:Convert web service.

Parameters

• name (str) – name of the knowledge base

• config (dict) – configuration parameter of the knowledge base as specified in the
config file.

• webservice (bioservices.REST or inheriting classes) – web service querying
object.

• hasGeneInformation (bool) – true if the knowledge base provides gene associa-
tion information, false otherwise

• hasPathwayInformation (bool) – true if the knowledge base also provides path-
way information, false otherwise

mapItems(itemList, originalFormat, desiredFormat)
Map a list of identifiers to the desired format.

Parameters

• itemList (list of str) – list of identifiers to be mapped.

• originalFormat (str) – current format of the identifiers.

• desiredFormat (str) – desired format to which to map identifiers.

Returns DataFrame table containing mappings of the identifiers from original to desired for-
mat.

Return type pandas.DataFrame

getRelevantGenes(labels)
Is not implemented for g:Convert.

Parameters labels (list of str) – list of gene names to be mapped

9.5. knowledgebases module 77

Comprior Documentation

Returns NotImplementedError as this knowledge base is not intended to be used for
such analyses.

Return type NotImplementedError

getGeneScores(labels)
Is not implemented for g:Convert.

Parameters labels (list of str) – list of gene names to be mapped

Returns NotImplementedError as this knowledge base is not intended to be used for
such analyses.

Return type NotImplementedError

getRelevantPathways(labels)
Is not implemented for g:Convert.

Parameters labels (list of str) – list of labels for which to find related pathways.

Returns NotImplementedError as this knowledge base is not intended to be used for
such analyses.

Return type NotImplementedError

class knowledgebases.OpenTargets
Bases: knowledgebases.KnowledgeBase

Knowledge base implementation of OpenTargets. Uses the OpenTargetsClient Python implementation provided
by OpenTargets to query the web service API.

Parameters

• name (str) – name of the knowledge base

• config (dict) – configuration parameter of the knowledge base as specified in the
config file.

• webservice (opentargets.OpenTargetsClient) – web service querying im-
plementation.

• hasGeneInformation (bool) – true if the knowledge base provides gene associa-
tion information, false otherwise

• hasPathwayInformation (bool) – true if the knowledge base also provides path-
way information, false otherwise

getAssociations(labels)
Get all relevant information for a given set of labels, sorted by their association scores in descending order.
Writes web service results into an intermediate file and maps the identifiers to have the correct format for
further processing.

Parameters labels (list of str) – list of labels, e.g. disease names.

Returns DataFrame containing all related genes and their association scores.

Return type pandas.DataFrame

getRelevantGenes(labels)
Get all genes that are somehow associated to the given labels, e.g. disease names.

Parameters labels (list of str) – list of identifiers, e.g. disease names, for which to
find associated genes.

Returns list of associated genes.

78 Chapter 9. Python Code Documentation

Comprior Documentation

Return type list of str

getGeneScores(labels)
Get all genes and their association scores that are related to the given labels, e.g. disease names.

Parameters labels (list of str) – list of identifiers, e.g. disease names, for which to
find associated genes.

Returns DataFrame of associated genes and their association scores, in descending order.

Return type pandas.DataFrame

getRelevantPathways(labels)
As OpenTargets currently does not provide pathway information, this feature is not implemented for
OpenTargets.

Parameters labels (list of str) – list of labels for which to find related pathways.

Returns NotImplementedError as this knowledge base is not intended to be used for
such analyses.

Return type NotImplementedError

class knowledgebases.Kegg(pathwayparser)
Bases: knowledgebases.KnowledgeBase

Knowledge base implementation for KEGG. Uses the KEGG web service implementation provided by bioser-
vices. Requires an instance of KEGGPathwayParser to be able to map retrieved pathways into the internal
pathway format.

Parameters

• name (str) – name of the knowledge base

• config (dict) – configuration parameter of the knowledge base as specified in the
config file.

• webservice (bioservices.KEGG) – web service querying implementation.

• hasGeneInformation (bool) – true if the knowledge base provides gene associa-
tion information, false otherwise

• hasPathwayInformation (bool) – true if the knowledge base also provides path-
way information, false otherwise

• pathwayparser (KEGGPathwayParser) – pathway mapping class that transforms
KEGG pathways in SIF format into the internally used pathway format.

getPathwayNames(labels)
Retrieve all pathway names related to the given labels, e.g. disease names.

Parameters labels (list of str) – list labels, e.g. disease names, for which to find
pathways.

Returns list of pathway names.

Return type list of str

getRelevantGenes(labels)
Get all genes that are related to a set of labels, e.g. disease names. For KEGG, this means we retrieve all
genes that are contained in pathways associated to these labels.

Parameters labels (list of str) – list of identifiers, e.g. disease names, for which to
find associated genes.

Returns list of associated genes.

9.5. knowledgebases module 79

Comprior Documentation

Return type list of str

getGeneScores(labels)
Get association scores for all genes that are related to the provided labels, e.g. disease names. For KEGG,
the association score for a gene is the sum of its degree percentile rank for every pathway, normalized
by the overall number of pathways retrieved. This favors hub genes/genes having many interactions with
other genes.

Parameters labels (list of str) – list of identifiers, e.g. disease names, for which to
find associated genes.

Returns DataFrame of associated genes and their association scores, in descending order.

Return type pandas.DataFrame

getRelevantPathways(labels)
Get all pathways related to a set of labels, e.g. disease names. Uses the KEGGPathwayParser to map
KEGG’s pathways from SIF to pypath.Network.

Parameters labels (list of str) – list of gene names to be mapped

Returns dict of pathway names and their internal representation as pypath.Network.

Return type dict

class knowledgebases.Disgenet
Bases: knowledgebases.KnowledgeBase

Knowledge base implementation for DisGeNET.

Parameters

• name (str) – name of the knowledge base

• config (dict) – configuration parameter of the knowledge base as specified in the
config file.

• webservice (DISGENET) – web service querying implementation.

• hasGeneInformation (bool) – true if the knowledge base provides gene associa-
tion information, false otherwise

• hasPathwayInformation (bool) – true if the knowledge base also provides path-
way information, false otherwise

getRelevantGenes(labels)
Get all genes that are related to a set of labels, e.g. disease names.

Parameters labels (list of str) – list of identifiers, e.g. disease names, for which to
find associated genes.

Returns list of associated genes.

Return type list of str

getGeneScores(labels)
Get association scores for all genes that are related to the provided labels, e.g. disease names. DisGeNET
provides a couple of association scores to its genes (https://www.disgenet.org/dbinfo). Which score to use
can be defined by the user in the config file.

Parameters labels (list of str) – list of identifiers, e.g. disease names, for which to
find associated genes.

Returns DataFrame of associated genes and their association scores, in descending order.

Return type pandas.DataFrame

80 Chapter 9. Python Code Documentation

https://www.disgenet.org/dbinfo

Comprior Documentation

getRelevantPathways(labels)
As DisGeNET currently does not provide pathway information, this feature is not implemented.

Parameters labels (list of str) – list of labels for which to find related pathways.

Returns NotImplementedError as this knowledge base is not intended to be used for
such analyses.

Return type NotImplementedError

class knowledgebases.Pathwaycommons
Bases: knowledgebases.KnowledgeBase

Knowledge base implementation for PathwayCommons.

Parameters

• name (str) – name of the knowledge base

• config (dict) – configuration parameter of the knowledge base as specified in the
config file.

• webservice (opentargets.OpenTargetsClient) – web service querying im-
plementation.

• hasGeneInformation (bool) – true if the knowledge base provides gene associa-
tion information, false otherwise

• hasPathwayInformation (bool) – true if the knowledge base also provides path-
way information, false otherwise

getGeneScores(labels)
Get association scores for all genes that are related to the provided labels, e.g. disease names. For
PathwayCommons, the association score for a gene is the sum of its degree percentile rank for every
pathway, normalized by the overall number of pathways retrieved. This favors hub genes/genes having
many interactions with other genes.

Parameters labels (list of str) – list of identifiers, e.g. disease names, for which to
find associated genes.

Returns DataFrame of associated genes and their association scores, in descending order.

Return type pandas.DataFrame

getRelevantGenes(labels)
Get all genes that are related to a set of labels, e.g. disease names. For PathwayCommons, this means we
retrieve all genes that are contained in pathways associated to these labels.

Parameters labels (list of str) – list of identifiers, e.g. disease names, for which to
find associated genes.

Returns list of associated genes.

Return type list of str

readPathway(pathway)
Reads a pathway to create pypath.Network.

Parameters pathway (str) – pathway string to parse

getRelevantPathways(labels)
Get all pathways related to a set of labels, e.g. disease names as pypath.Network.

Parameters labels (list of str) – list of gene names to be mapped

Returns dict of pathway names and their internal representation as pypath.Network.

9.5. knowledgebases module 81

Comprior Documentation

Return type dict

class knowledgebases.PathwayParser
Bases: object

Super class that maps a pathway from its original format (provided by a knowledge base) to the internally
used pypath.Network. When having to map pathways from a knowledge base, implement a new class that
inherits from this one and implements PathwayParser.parsePathway().

parsePathway(pathway, pathwayID)
Abstract method. Parse a pathway to the internally used format of pypath.Network.

Parameters

• pathway (str) – pathway string to parse

• pathwayID (str) – name of the pathway

Returns pathway in the internally used format..

Return type pypath.Network

class knowledgebases.KEGGPathwayParser
Bases: knowledgebases.PathwayParser

Parse KEGG pathways, which are returned in KGML format.

readInteractions(interactions, geneIds)
Parses interactions for a set of genes.

Parameters

• interactions (list) – interactions to parse

• geneIds (list of str) – gene ids whose interactions to add

parsePathway(kgml_pathway, pathwayID)
Parse KEGG pathway to the internally used format of pypath.Network.

Parameters

• pathway (str) – pathway string to parse

• pathwayID (str) – name of the pathway

Returns pathway in the internally used format..

Return type pypath.Network

9.6 evaluation module

Contains all classes related to the evaluation part. There are distinct classes for the following evalua-
tion aspects: * review of knowledge base coverage for the provided search terms (see evaluation.
KnowledgeBaseEvaluator) * inspection of data set quality, e.g. via mds or density plots (see evaluation.
DatasetEvaluator) * comparison and assessment of feature rankings, e.g. overlap (see evaluation.
RankingsEvaluator) * annotation of feature rankings and enrichment via EnrichR (see evaluation.
AnnotationEvaluator) * classification and subsequent visualization of standard metrics (see evaluation.
ClassificationEvaluator) * cross-classification across a second data set and visualization of standard metrics
(see evaluation.CrossEvaluator)

Every one of these classes inherits from the abstract evaluation.Evaluator and implements the evaluate()
method. evaluation.AttributeRemover is used in the overall benchmarking process to prepare the input

82 Chapter 9. Python Code Documentation

Comprior Documentation

data to contain only the selected features. For a detailed look at the class architecture, have a look at ADD CLASS
ARCHITECTURE LINK HERE.

class evaluation.AttributeRemover(dataDir, rankingsDir, topK, outputDir)
Bases: object

Prepares the input data set for subsequent classification by removing lowly-ranked features and only keeping
the top k features. Creates one “reduced” file for every ranking and from one to k (so if k is 50, we will end up
with 50 files having one and up to 50 features.

Parameters

• dataDir (str) – absolute path to the directory that contains the input data set whose
features to reduce.

• rankingsDir (str) – absolute path to the directory that contains the rankings.

• topK (str) – maximum numbers of features to select.

• outputDir (str) – absolute path to the directory where the reduced files will be
stored.

loadTopKRankings()
Loads all available rankings from files.

Returns Dictionary with selection methods as keys and a ranked list of the (column) names
of the top k features.

Return type dict

removeAttributesFromDataset(method, ranking, dataset)
Creates reduced data sets from dataset for the given method’s ranking that only contain the top x features.
Creates multiple reduced data sets from topKmin to topKmax specified in the config.

Parameters

• method (str) – selection method applied for the ranking.

• ranking (List of str) – (ranked) list of feature names from the top k features.

• dataset (pandas.DataFrame) – original input data set

removeUnusedAttributes()
For every method and its corresponding ranking, create reduced files with only the top x features.

class evaluation.Evaluator(input, output, methodColors)
Bases: object

Abstract super class. Every evaluation class has to inherit from this class and implement its evaluate()
method.

Parameters

• input (str) – absolute path to the directory where the input data is located.

• output (str) – absolute path to the directory to which to save results.

• methodColors (dict of str) – dictionary containing a color string for every se-
lection method.

• javaConfig (str) – configuration parameters for java code (as specified in the config
file).

• rConfig (str) – configuration parameters for R code (as specified in the config file).

9.6. evaluation module 83

Comprior Documentation

• evalConfig (str) – configuration parameters for evaluation, e.g. how many features
to select (as specified in the config file).

• classificationConfig (str) – configuration parameters for classification, e.g.
which classifiers to use (as specified in the config file).

evaluate()
Abstract. Must be implemented by inheriting class as this method is invoked by framework.
Framework to run the evaluation.

loadRankings(inputDir, maxRank, keepOrder)
Loads all rankings from a specified input directory. If only the top k features shall be in the ranking, set
maxRank accordingly, set it to 0 if otherwise (so to load all features). If feature order is important in the
returned rankings, set keepOrder to true; if you are only interested in what features are among the top
maxRank, set it to false.

Parameters

• inputDir (str) – absolute path to directory where all rankings are located.

• maxRank (int) – maximum number of features to have in ranking.

• keepOrder (bool) – whether the order of the features in the ranking is important
or not.

Returns Dictionary of rankings per method, either as ordered list or set (depending on
keepOrder attribute)

Return type dict

computeKendallsW(rankings)
Computes Kendall’s W from two rankings. Note: measure does not make much sense if the two rankings
are highly disjunct, which can happen especially for traditional approaches.

Parameters rankings (matrix) – matrix containing two rankings for which to compute
Kendall’s W.

Returns Kendall’s W score.

Return type float

class evaluation.ClassificationEvaluator(inputDir, rankingsDir, intermediateDir, output-
Dir, methodColors, methodMarkers)

Bases: evaluation.Evaluator

Evaluates selection methods via classification by using only the selected features and computing multiple stan-
dard metrics. Uses AttributeRemover to create reduced datasets containing only the top k features, which
are then used for subsequent classification. Currently, classification and subsequent evaluation is wrapped here
and is actually carried out by java jars using WEKA.

Parameters

• input (str) – absolute path to the directory where the input data for classification is
located.

• rankingsDir (str) – absolute path to the directory where the rankings are located.

• intermediateDir (str) – absolute path to the directory where the reduced datasets
(containing only the top k features) are written to.

• output (str) – absolute path to the directory to which to save results.

• methodColors (dict of str) – dictionary containing a color string for every se-
lection method.

84 Chapter 9. Python Code Documentation

Comprior Documentation

• javaConfig (str) – configuration parameters for java code (as specified in the config
file).

• rConfig (str) – configuration parameters for R code (as specified in the config file).

• evalConfig (str) – configuration parameters for evaluation, e.g. how many features
to select (as specified in the config file).

• classificationConfig (str) – configuration parameters for classification, e.g.
which classifiers to use (as specified in the config file).

drawLinePlot(inputDir, outputDir, topK, metric)
Draws a line plot for a given metric, using all files containing evaluation results for that metric in inputDir.
In the end, the plot will have one line per feature selection approach for which classification results are
available.

Parameters

• inputDir (str) – absolute path to directory containing all input files (from which
to draw the graph).

• outputDir (str) – absolute path to the output directory where the the graph will
be saved.

• topK (int) – maximum x axis value

• metric (str) – metric name for which to draw the graph.

evaluate()
Triggers classification and evaluation in Java and creates corresponding plots for every metric that was
selected in the config.

class evaluation.RankingsEvaluator(input, dataset, outputPath, methodColors)
Bases: evaluation.Evaluator

Evaluates the rankings themselves by generating overlaps and comparing fold change differences.

Parameters

• input (str) – absolute path to the directory where the input data is located.

• output (str) – absolute path to the directory to which to save results.

• methodColors (dict of str) – dictionary containing a color string for every se-
lection method.

• javaConfig (str) – configuration parameters for java code (as specified in the config
file).

• rConfig (str) – configuration parameters for R code (as specified in the config file).

• evalConfig (str) – configuration parameters for evaluation, e.g. how many features
to select (as specified in the config file).

• classificationConfig (str) – configuration parameters for classification, e.g.
which classifiers to use (as specified in the config file).

• dataset (str) – absolute file path to the input data set (from which features were
selected).

• metrics (List of str) – list of metrics to apply to ranking evaluation (as specified in
the config file).

generateOverlaps()
Creates overlap plots for the available rankings (set during creating to self.input). For up to two rankings,

9.6. evaluation module 85

Comprior Documentation

use Python’s matplotlib to create Venn diagrams. For three rankings and above, create UpsetR (https:
//github.com/hms-dbmi/UpSetR) diagrams via R.

loadGeneRanks(inputDir, topK)
Used for computing Kendall’s W. Loads rankings and creates a table (approach x features) containing
individual ranks per feature per approach, e.g. #approach G1 G2 G3 #Ranker1 1 2 3 #Ranker 2 3 1 2

Parameters

• inputDir (str) – absolute path to the directory containing all ranking files.

• topK (int) – maximum number of features to use (=length of the rankings).

Returns Ranking table containing every assigned rank for every feature per ranking approach.

Return type numpy.array

computePValue(W, m, n)
Computes the p-value for a given Kendall’s W score via a simple permutation (1000 times) test.

Parameters

• W (float) – Kendall’s W score.

• m (int) – number of approaches/rankings to compare.

• n (int) – number of features in each ranking.

Returns p-value of Kendall’s W score.

Return type float

computeKendallsWScores()
Computes Kendall’s correlation coefficients (W) and its corresponding p-value for the top 50, 500, 5,000
and all (code: 0) ranked features of existing rankings. Conducts a permutation test for all scores to receive
p-value. Writes output to a file containing the correlation coefficients and their corresponding p-value for
different length of rankings.

drawBoxPlot(data, labels, prefix)
Draws a box plot from the given data with the given labels on the x axis and the given prefix in the
headlines.

Parameters

• data (List of lists of floats) – Data to plot; a list containing lists of values.

• labels (List of str) – List of method names.

• prefix (str) – Prefix to use for file name and title.

computeFoldChangeDiffs()
Computes median and mean fold changes for all selected features per approach. Writes fold changes to
file and creates corresponding box plots.

evaluate()
Runs evaluations on feature rankings based on what is specified in the config file. Currently, can compute
feature overlaps, Kendall’s correlation coefficient (W), and box plots for mean and median fold changes
of selected features.

class evaluation.CrossEvaluator(input, rankingsDir, output, methodColors)
Bases: evaluation.Evaluator

Runs the evaluation across a second data set. Takes the top k ranked features, removes all other features from
that second data set. Runs a ClassificationEvaluator on that second data set with the selected features.

Parameters

86 Chapter 9. Python Code Documentation

https://github.com/hms-dbmi/UpSetR
https://github.com/hms-dbmi/UpSetR

Comprior Documentation

• input (str) – absolute path to the directory where the second data set for cross-
validation is located.

• rankingsDir (str) – absolute path to the directory containing all rankings.

• output (str) – absolute path to the directory to which to write all classification results.

• methodColors (dict) – Dictionary that assigns every (ranking) method a unique
color (used for drawing subsequent plots).

• javaConfig (str) – configuration parameters for java code (as specified in the config
file).

• rConfig (str) – configuration parameters for R code (as specified in the config file).

• evalConfig (str) – configuration parameters for evaluation, e.g. how many features
to select (as specified in the config file).

• classificationConfig (str) – configuration parameters for classification, e.g.
which classifiers to use (as specified in the config file).

evaluate()
Runs crossClassification = takes the features selected on the original data set and uses them to classify a
second (cross-validation) data set.

class evaluation.AnnotationEvaluator(input, output, methodColors)
Bases: evaluation.Evaluator

Annotates and enriches feature rankings with EnrichR (https://maayanlab.cloud/Enrichr/). What library to be
used for annotation must be specified in the config file. Can compute annotation and enrichment overlaps for
different feature rankings. Annotation = annotate features with terms/information Enrichment = check what
terms are enriched in a feature ranking and are related to multiple features. Overlaps then can show a) if feature
rankings represent the same underlying processes via annotation (maybe although having selected different
features), or b) if the underlying processes are equally strongly represented by checking the enrichment (maybe
altough having seleced different features).

Parameters

• input (str) – absolute path to the directory where the second data set for cross-
validation is located.

• output (str) – absolute path to the directory to which to write all classification results.

• methodColors (dict) – dictionary that assigns every (ranking) method a unique
color (used for drawing subsequent plots).

• metrics (List of str) – list of metrics to compute, to be configured in config.

• dataConfig (dict) – config parameters for the input dataset.

• javaConfig (str) – configuration parameters for java code (as specified in the config
file).

• rConfig (str) – configuration parameters for R code (as specified in the config file).

• evalConfig (str) – configuration parameters for evaluation, e.g. how many features
to select (as specified in the config file).

• classificationConfig (str) – configuration parameters for classification, e.g.
which classifiers to use (as specified in the config file).

countAnnotationPercentages(featureLists, inputDir)
Count the number of features (=number of lines in annotation file) that have been annotated and compute
percentages. Write output to a file “annotationsPercentages.csv” in self.outputDir.

9.6. evaluation module 87

https://maayanlab.cloud/Enrichr/

Comprior Documentation

Parameters

• featureLists (dict) – dictionary of lists of features per selection method.

• inputDir (str) – absolute path to directory containing annotation files.

loadAnnotationFiles(inputDir, inputFiles)
Loads files with feature annotations.

Parameters

• inputDir (str) – absolute path to directory containing annotation files.

• inputFiles (List of str) – list of annotation file names to load.

Returns dictionary of annotation sets per selection method.

Return type dict

computeOverlap(inputDir, fileSuffix)
Creates overlap plots for the available annotations/enrichments. For up to two rankings, use Python’s
matplotlib to create Venn diagrams. For three rankings and above, create UpsetR (https://github.com/
hms-dbmi/UpSetR) diagrams via R.

Parameters

• inputDir (str) – absolute path to directory containing files for which to compute
overlap.

• fileSuffix (str) – suffix in filename to recognize the right files.

evaluate()
Runs the annotation/enrichment evaluation on the rankings. Depending on what was specified in the
config file, annotate and/or enrich feature rankings and compute overlaps or percentages. Overlaps then
can show a) if feature rankings represent the same underlying processes via annotation (maybe although
having selected different features), or b) if the underlying processes are equally strongly represented by
checking the enrichment (maybe altough having seleced different features).

class evaluation.DatasetEvaluator(input, output, separator, options)
Bases: evaluation.Evaluator

Creates plots regarding data set quality, currently: MDS, density, and box plots. Wrapper class because the
actual evaluation and plot creation is done in an R script.

Parameters

• input (str) – absolute path to the directory where the input data set is located (for
which to create the plots).

• output (str) – absolute path to the directory to which to save plots.

• separator (str) – separator character in data set to read it correctly.

• options (list of str) – what plots to create, a list of method names that must be
specified in the config file.

• javaConfig (str) – configuration parameters for java code (as specified in the config
file).

• rConfig (str) – configuration parameters for R code (as specified in the config file).

• evalConfig (str) – configuration parameters for evaluation, e.g. how many features
to select (as specified in the config file).

• classificationConfig (str) – configuration parameters for classification, e.g.
which classifiers to use (as specified in the config file).

88 Chapter 9. Python Code Documentation

https://github.com/hms-dbmi/UpSetR
https://github.com/hms-dbmi/UpSetR

Comprior Documentation

evaluate()
Triggers the actual evaluation/plot generation in R. If a second data set for cross-validation was provided,
also run the corresponding R script on that data set.

class evaluation.KnowledgeBaseEvaluator(output, knowledgebases, searchterms)
Bases: evaluation.Evaluator

Creates plots to evaluate knowledge base coverage. Queries the knowledge bases with the given search terms
and checks how many genes or pathways are found.

Parameters

• output (str) – absolute path to the directory to which to save plots.

• knowledgebases (list of str) – a list of knowledgebases to test.

• searchterms (list of str) – list of search terms for which to check knowledge
base coverage.

• javaConfig (str) – configuration parameters for java code (as specified in the config
file).

• rConfig (str) – configuration parameters for R code (as specified in the config file).

• evalConfig (str) – configuration parameters for evaluation, e.g. how many features
to select (as specified in the config file).

• classificationConfig (str) – configuration parameters for classification, e.g.
which classifiers to use (as specified in the config file).

drawCombinedPlot(stats, colIndex, filename, title, ylabel1, ylabel2, colors)
Creates combined plot of box and bar plot from a data set.

Parameters

• stats (pandas.DataFrame) – statistics to plot.

• colIndex (int) – column index to use as column.

• filename (str) – filename for the plot.

• title (str) – title for the plot.

• ylabel1 (str) – label of y axis (left side/box plot).

• ylabel2 (str) – label of y axis (right side/bar plot).

• colors (List of str) – List of colors to use for the different search terms.

createKnowledgeBases(knowledgebaseList)
Creates knowledge base objects from a given list.

Parameters knowledgeBaseList (List of str.) – List of knowledge base names to cre-
ate.

Returns List of knowledge base objects

Return type List of KnowledgeBase or inheriting classes

checkCoverage(kb, colors, useIDs)
Checks the coverage for a given knowledge base and creates corresponding plots.

Parameters

• kb (knowledgebases.KnowledgeBase or inheriting class) – knowledge base
object for which to check coverage.

9.6. evaluation module 89

Comprior Documentation

• colors (List of str) – List of colors to use for plots.

checkPathwayCoverage(kb, colors, useIDs)
Checks the pathway coverage for a given knowledge base and creates corresponding plots.

Parameters

• kb (knowledgebases.KnowledgeBase or inheriting class) – knowledge base
object for which to check pathway coverage.

• colors (List of str) – List of colors to use for plots.

evaluate()
Evaluates every given knowledge base and checks how many genes and pathways (and how large they
are) are in there for the given search terms. Creates corresponding plots.

90 Chapter 9. Python Code Documentation

CHAPTER 10

R Code Documentation

10.1 Feature Selection

.. FS_mRMR.R::

#Runs mRMR feature selection in parallel as implemented in the mRMRe package: De
→˓Jay, N. et al. "mRMRe: an R package for parallelized mRMR ensemble feature
→˓selection." Bioinformatics (2013).
#Although run in parallel, the performance is still not very good for high-
→˓dimensional data sets (>20.000 features).
#The resulting scores sometimes seem to not be sorted.
#However, these scores are the individual features' scores and feature
→˓combinations can result in a different overall ranking.
#Invoked by python's featureselection.MRMRSelector class.
#
#@param args the input parameters parsed from the command line, consisting of
- absolute path to the input data set file.
- absolute path to the output file where the ranking will be stored.
- maximum number of features to select.

library(mRMRe)

args = commandArgs(trailingOnly=TRUE)

inputFile <- args[[1]]
outputLocation <- args[[2]]
maxFeatures <- args[[3]]

if (length(args)<3) {
stop("Please supply three arguments: inputFile (data set), outputLocation

→˓(feature ranking), and maxFeatures (number of features to select)", call.=FALSE)
}

(continues on next page)

91

Comprior Documentation

(continued from previous page)

rawData <- read.csv(inputFile, check.names = FALSE, stringsAsFactors = TRUE)
#check.names= FALSE necessary because R introducing X for column names beginning
→˓with numbers
geneExpressionMatrix <- rawData[-c(1)]
geneExpressionMatrix[,1] <- as.numeric(geneExpressionMatrix[,1])

#do feature selection here
dd <- mRMR.data(data = geneExpressionMatrix)
features <- mRMR.classic(data = dd, target_indices = c(1), feature_count =
→˓maxFeatures)

ranking <- solutions(features)
scores <- features@scores[[1]]

colNames <- names(geneExpressionMatrix)
featureNames <- list(colNames[unlist(ranking)])

outputData <- list(featureNames,scores)

fileOutput <- as.data.frame(outputData)

colnames(fileOutput) <- c("attributeName", "score")

write.csv(fileOutput, file = outputLocation, row.names = FALSE, sep = "\t")

Runs mRMR feature selection in parallel as implemented in the mRMRe package: De Jay, N. et al. “mRMRe:
an R package for parallelized mRMR ensemble feature selection.” Bioinformatics (2013). Although run in
parallel, the performance is still not very good for high-dimensional data sets (>20.000 features). The resulting
scores sometimes seem to not be sorted. However, these scores are the individual features’ scores and feature
combinations can result in a different overall ranking. Invoked by featureselection.MRMRSelector.

Param args the input parameters parsed from the command line, consisting of a) the absolute path
to the input data set file, b) the absolute path to the output file where the ranking will be stored,
and c)the maximum number of features to select.

.. FS_LassoPenalty.R::

#Runs Lasso feature selection with individual penalty scores for each feature as
→˓implemented in the xtune package:
#Zeng, C. et al.: "Incorporating prior knowledge into regularized regression",
→˓Bioinformatics (2020), https://doi.org/10.1093/bioinformatics/btaa776
#Invoked by python's featureselection.LassoPenaltySelector class.
#
#@param args the input parameters parsed from the command line, consisting of
- absolute path to the input data set file.
- absolute path to the output file where the ranking will be stored.
- absolute path to the input ranking file (where the external rankings
→˓that will serve as penalty scores are stored).

library(xtune)

args = commandArgs(trailingOnly=TRUE)

input.filename <- args[[1]]
output.filename <- args[[2]]

(continues on next page)

92 Chapter 10. R Code Documentation

Comprior Documentation

(continued from previous page)

external.filename <- args[[3]]

if (length(args)<3) {
stop("Please supply three arguments: inputFile (gene expression data),

→˓outputLocation (feature ranking), and filename for external scores", call.
→˓=FALSE)
}

expression.matrix <- read.csv(input.filename, check.names = FALSE, row.names = 1)
external.scores <- read.csv(external.filename, check.names = FALSE, row.names = 1)
#check.names= FALSE necessary because R introducing X for column names beginning
→˓with numbers

expression.levels <- expression.matrix[-c(1,1)]

#we want to predict the labels = classes
labels <- expression.matrix[1]
#make labels numeric
label.types = unique(labels[,1])

labels <- as.numeric(factor(labels[,1], label.types, labels = 1:length(label.
→˓types)))

#train the model
prior.knowledge.model <- xtune(as.matrix(expression.levels), labels, external.
→˓scores)

coefs <- coef(prior.knowledge.model)
final.scores <- as.data.frame(as.matrix(coefs))
#rename score column
colnames(final.scores) <- c("score")
#remove intercept element (drop param keeps row names)
final.scores <- final.scores[-c(1),, drop=FALSE]
feature.indexes <- order(final.scores$score,decreasing = TRUE)
final.scores <- final.scores[feature.indexes,, drop = FALSE] #drop retains row
→˓names
final.scores <- cbind(attributeName = rownames(final.scores), final.scores)

#write dataframe
write.table(final.scores, output.filename, row.names = FALSE, sep = "\t")

Runs Lasso feature selection with individual penalty scores for each feature as implemented in the xtune pack-
age: Zeng, C. et al.: “Incorporating prior knowledge into regularized regression”, Bioinformatics (2020), https:
//doi.org/10.1093/bioinformatics/btaa776 Invoked by featureselection.LassoPenaltySelector.

Param args the input parameters parsed from the command line, consisting of a) the absolute path
to the input data set file, b) the absolute path to the output file where the ranking will be stored,
and c) the absolute path to the input ranking file (where the external rankings that will serve
as penalty scores are stored).

.. FS_Variance.R::

#Runs variance-based feature selection as implemented in the genefilter package.
#For every feature, computes its variance across all samples.
#Features are then ranked in descending order - highly variant features are more
→˓likely to separate samples into classes and seem to be the most interesting
→˓ones. (continues on next page)

10.1. Feature Selection 93

https://doi.org/10.1093/bioinformatics/btaa776
https://doi.org/10.1093/bioinformatics/btaa776

Comprior Documentation

(continued from previous page)

#Invoked by python's featureselection.VarianceSelector class.
#
#@param args the input parameters parsed from the command line, consisting of
- absolute path to the input data set file.
- absolute path to the output file where the ranking will be stored.

library(genefilter)

args = commandArgs(trailingOnly=TRUE)

if (length(args)<2) {
stop("Please supply two arguments: inputFile (gene expression data) and

→˓outputLocation (feature ranking)", call.=FALSE)
}

rawData <- read.csv(args[1], check.names = FALSE)
#check.names= FALSE necessary because R introducing X for column names beginning
→˓with numbers

geneExpressionMatrix <- rawData[-c(1,2)]

rV <- rowVars(t(geneExpressionMatrix))

ordered <- rV[order(-rV) , drop = FALSE]

orderedNameList <- names(ordered)

orderedNameValueList <- c(orderedNameList,data.frame(ordered)[,1])

orderedNameValueMatrix <- matrix(orderedNameValueList,ncol=2)

colnames(orderedNameValueMatrix) <- c("attributeName", "score")

write.table(orderedNameValueMatrix, file = args[2], row.names = FALSE, sep = "\t")

Runs variance-based feature selection as implemented in the genefilter package. For every feature, computes its
variance across all samples. Features are then ranked in descending order - highly variant features are more likely
to separate samples into classes and seem to be the most interesting ones. Invoked by featureselection.
VarianceSelector.

Param args the input parameters parsed from the command line, consisting of ab) the absolute
path to the input data set file and b) the absolute path to the output file where the ranking will
be stored.

10.2 Utility

.. DataCharacteristicsPlotting.R::

#Creates plots to show some characteristics of a given expression data set and
→˓its class labels.
#Currently supported plots that can be selected:
- density plots (density)
- box plot (box)

(continues on next page)

94 Chapter 10. R Code Documentation

Comprior Documentation

(continued from previous page)

- mds plot (mds)
#Invoked by python's evaluation.DatasetEvaluator class.
#
#@param args the input parameters parsed from the command line, consisting of
- absolute path to the input expression file.
- absolute path to the output directory where the plots will be stored.
- separator to use for reading the input expression file.
- a boolean value whether the input expression data is labeled or not.
- a list of option names that define what plots are created. Currently
→˓supported: density (density plot), box (boxplot of expression values), mds).
library(ggplot2)
library(dplyr)
library(tidyr)
library(tools)

args = commandArgs(trailingOnly=TRUE)

input.filename <- args[[1]]
output.dir <- args[[2]]
separator <- args[[3]]
labeledData <- args[[4]]
options <- args[5:length(args)]

if (length(options) == 0){
stop("No data characteristics were selected in config file", call.=FALSE)

}
rownamescol <- 1

data <- read.table(input.filename, sep= separator, header=TRUE, row.names =
→˓rownamescol, check.names = FALSE, stringsAsFactors = FALSE)
if (labeledData == "TRUE"){
unlabeleddata <- data[-1] #remove label column
labelCol <- colnames(data)[1]

}
filename = file_path_sans_ext(basename(input.filename))

#################### PLOT DENSITIES ####################
if ("density" %in% options){
output.filename = paste0(output.dir, "density_", filename, ".pdf")
pl2 <- data %>% gather(key = "Gene", value = "Expression", -1) %>% ggplot(.,

→˓aes(x=Expression, color = get(labelCol))) + geom_density()
pdf(output.filename)
print(pl2)
dev.off()

}

#################### PLOT DISTRIBUTION ####################
if ("box" %in% options){
output.filename = paste0(output.dir, "distribution_", filename, ".pdf")
boxpl <- data %>% gather(key = "Gene", value = "Expression", -1) %>% ggplot(.,

→˓aes(get(labelCol), Expression, color = get(labelCol))) + geom_boxplot()
pdf(output.filename)
print(boxpl)
dev.off()

}

(continues on next page)

10.2. Utility 95

Comprior Documentation

(continued from previous page)

#################### PLOT MDS ####################
if ("mds" %in% options){
output.filename = paste0(output.dir, "mds_", filename, ".pdf")
#compute euclidean distance matrix (euclidean distance is used in the limma

→˓package)
dist.eu <- as.matrix(dist(unlabeleddata, method = "euclidean"))
mds.eu <- as.data.frame(cmdscale(dist.eu))
mds.eu <- merge(mds.eu, data[1], by="row.names", all=TRUE)

mdspl <- ggplot(mds.eu, aes(V1, V2, label = classLabel, color = classLabel)) +
geom_point(size=2) +
labs(x="", y="", title="MDS by Euclidean") + theme_bw()

pdf(output.filename)
print(mdspl)
dev.off()

}

Creates plots to show some characteristics of a given expression data set and its class labels. Currently sup-
ported plots that can be selected: density plots (density), box plot (box), and mds plot (mds). Invoked by
evaluation.DatasetEvaluator.

Param args the input parameters parsed from the command line, consisting of a) the absolute path
to the input expression file, b) the absolute path to the output directory where the plots will be
stored, c) the separator to use for reading the input expression file, d) a boolean value whether
the input expression data is labeled or not, and e) a list of option names that define what plots
are created. Currently supported: density (density plot), box (boxplot of expression values),
mds).

.. UpsetDiagramCreation.R::

#Uses the UpSetR package to create an upset diagram for a given set of features.
#Invoked by python's evaluation.RankingsEvaluator and evaluation.
→˓AnnotationEvaluator classes.
#
#@param args the input parameters parsed from the command line, consisting of
- absolute path to the output file where to store the created plot.
- number of top k features for which to compute the feature set
→˓overlaps.
- absolute path to the input directory containing the input files.
- string of color ids separated by "_", used for giving every feature
→˓ranking a unique color.
- list of input files containing the rankings. their order corresponds
→˓to the order of colors.
library(UpSetR)
library(stringr)

args = commandArgs(trailingOnly=TRUE)

outputFile = args[[1]]

topK = strtoi(args[[2]])

inputPath = args[[3]]

#remove training _
(continues on next page)

96 Chapter 10. R Code Documentation

Comprior Documentation

(continued from previous page)

colorstring = substring(args[[4]], 2)

#split by _
colors = str_split(colorstring, "_")
rankings = list()
setCount = 0

for (filename in args[5:length(args)]) {
approach.topK = topK
topGenes = list()
#find fileending
parts = gregexpr(pattern ='\\.', filename)[[1]]
method = substr(filename, 1, parts[length(parts)] - 1)
file = paste(inputPath, filename, sep="")
ranking <- read.csv(file, sep = "\t", stringsAsFactors = FALSE)
#get top n genes for the overlap and adapt topK if we have fewer genes
numRows = nrow(ranking)
if (numRows > 0){

if (numRows < approach.topK){
approach.topK = numRows

}
genes = head(ranking, n = approach.topK)[[1]]
#as the genes in the columns are by default detected as factors, we just get

→˓the levels (=distinct names)
topGenes = genes

}

#only add approach results if they are not empty
if (length(topGenes) > 0){

#make a list out of topGenes otherwise we have a format issue
rankings[method] = list(topGenes)
setCount = setCount + 1

}
}
print(paste0("UPSETR SETCOUNT ", toString(setCount)))
print(paste0("UPSETR COLORCOUNT ", toString(length(colors))))
pdf(file=outputFile, onefile=FALSE)
upset(fromList(rankings), nsets = setCount, order.by = "freq", sets.bar.color =
→˓unlist(colors, use.names=FALSE))

dev.off()

.. IdentifierMapping.R::

#Maps a set of identifiers to a desired format by using the biomaRt package.
#Currently, usage of this functionality is not enabled as biomaRt showed to be
→˓very unstable for returning queries in parallel
#(the server is not reachable, the connection is blocked, ...).
#The current implementation sends the identifiers for mapping in chunks of 10.000
→˓identifiers
#(that was one desperate try to improve biomaRt stability, but it probably did
→˓not help...).
Invoked by python's knowledgebases.BioMART class.
#

(continues on next page)

10.2. Utility 97

Comprior Documentation

(continued from previous page)

#@param args the input parameters parsed from the command line, consisting of
- original ID format (corresponding to biomaRt identifiers), e.g.
→˓ensembl_gene_id
- desired ID format (corresponding to biomaRt identifiers), e.g. hgnc_
→˓symbol
- absolute path to the input file, which contains one identifier per
→˓line
- absolute path to the output file where the mapping will be stored.

library(biomaRt)
library(httr)

args = commandArgs(trailingOnly=TRUE)
originalIDFormat <- args[[1]]
requiredIDFormat <- args[[2]]
inputFile <- args[[3]]
outputFile <- args[[4]]
httr::set_config(httr::config(ssl_verifypeer = FALSE))
mart<-useEnsembl(biomart = "ENSEMBL_MART_ENSEMBL",

dataset = "hsapiens_gene_ensembl", mirror = "useast")
print(inputFile)
#load data set from file
data <- read.csv(inputFile, header = FALSE, stringsAsFactors = FALSE)
#fetch gene mapping
#attributes: what your results shall include
#filters: what platform your IDs are currently from
#values: the concrete IDs as input
#mapping <- getBM(attributes = c(originalIDFormat, requiredIDFormat), filters =
→˓originalIDFormat, values=data, mart = mart)
chunksize = 10000

final_mapping = NULL
chunks = as.integer(nrow(data)/chunksize)
if (chunks > 0){
for (i in 1:chunks){

start = ((i-1) * chunksize) + 1
end = i * chunksize
genechunk = data[start:end,1]
mapping <- getBM(attributes = c(originalIDFormat, requiredIDFormat), filters

→˓= originalIDFormat, values=(genechunk), mart = mart)
if (is.null(final_mapping)){
final_mapping = mapping

} else{
final_mapping = rbind(final_mapping, mapping)

}
}

}

leftover = as.integer(nrow(data) - (chunks * chunksize))
if (leftover > 0){
start = (chunks * chunksize) + 1
end = nrow(data)
last_genechunk = data[start:end,1]
mapping <- getBM(attributes = c(originalIDFormat, requiredIDFormat), filters =

→˓originalIDFormat, values=(last_genechunk), mart = mart)
if (is.null(final_mapping)){

final_mapping = mapping
(continues on next page)

98 Chapter 10. R Code Documentation

Comprior Documentation

(continued from previous page)

} else{
final_mapping = rbind(final_mapping, mapping)

}
}
write.csv(final_mapping, outputFile, row.names = FALSE)

The current implementation sends the identifiers for mapping in chunks of 10.000 identifiers (that was one
desperate try to improve biomaRt stability, but it probably did not help. . .). Invoked by knowledgebases.
BioMART.

Param args the input parameters parsed from the command line, consisting of a) the original ID
format (corresponding to biomaRt identifiers), e.g. ensembl_gene_id, b) the desired ID format
(corresponding to biomaRt identifiers), e.g. hgnc_symbol, c) the absolute path to the input
file, which contains one identifier per line, and d) the absolute path to the output file where the
mapping will be stored.

10.2. Utility 99

Comprior Documentation

100 Chapter 10. R Code Documentation

CHAPTER 11

Java Code Documentation

11.1 Feature Selection

public class WEKA_FeatureSelector

package de.hpi.bmg;

import weka.core.Instances;

import java.util.ArrayList;
import java.util.List;

/**
* Entry point class for running a feature selector on a data set.

* Invoke the jar of this java file to carry out feature selection
→˓procedure (see an example in :class:`featureselection.
→˓InfoGainSelector` how to do that).

*/
public class WEKA_FeatureSelector {

/**
* Loads the input data set and creates selector objects based on

→˓the provided list of feature selector names.

* Invokes feature selection procedures for all selectors and writes
→˓the results to the output directory, one file per selector.

*
* @param args the parameters provided when invoking the jar.

→˓Provide the following parameters:

* - absolute path to the input data set.

* - absolute path to the output directory (where to
→˓write the feature rankings).

* - a string of feature selectors, separated by a comma
→˓(e.g. "InfoGain,ReliefF").

*/

(continues on next page)

101

Comprior Documentation

(continued from previous page)

public static void main(String[] args) {

DataLoader dl = new DataLoader(args[0], ",");

Instances data = dl.getData();

//delete sample column
data.deleteAttributeAt(0);
//System.out.print(data);
//set classLabel column to classIndex column
data.setClassIndex(0);
//System.out.print(data.classAttribute());

List<String> attributeSelectionMethods = new ArrayList<String>();

for (int i=2; i < args.length; i++) {
attributeSelectionMethods.add(args[i]);

}

for (String asMethod : attributeSelectionMethods) {

AttributeSelector as = new AttributeSelector(data, asMethod);

as.selectAttributes();
//System.out.print(asMethod);

as.saveSelectedAttributes(args[1]);
}

}

}

Entry point class for running a feature selector on a data set. Invoke the jar of this java file to carry
out feature selection procedure. Is invoked by during feature selection by featureselection.
InfoGainSelector.

public static void main(String[] args)
Loads the input data set and creates selector objects based on the provided list of feature selector names.
Invokes feature selection procedures for all selectors and writes the results to the output directory, one file
per selector.

Parameters

• args – The parameters provided when invoking the jar. Provide the following pa-
rameters: a) the absolute path to the input data set, b) the absolute path to the output
directory (where to write the feature rankings), and c) a string of feature selectors to
run, separated by a comma (e.g. “InfoGain,ReliefF”).

public class DataLoader

package de.hpi.bmg;

import weka.core.Instances;
import weka.core.converters.CSVLoader;

(continues on next page)

102 Chapter 11. Java Code Documentation

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

Comprior Documentation

(continued from previous page)

import java.io.File;
import java.io.IOException;

/**
* Class for loading a data set from a file.

* Used by classes WEKA_Evaluator and WEKA_FeatureSelector.

*/
public class DataLoader {

String sourceFile;

Instances data;

/**
* Constructor method.

* Loads the data from the specified source file and stores it in the data
→˓class attribute.

*
* @param sourceFile absolute path of the input file from which to load the

→˓data.

* @param separator separator to use for file reading, e.g a comma.

*/
public DataLoader(String sourceFile, String separator) {

this.sourceFile = sourceFile;
loadData(separator);

}

/**
* Returns the loaded data set.

*
* @return the data set.

*/
public Instances getData() {

return data;
}

/**
* Carries out the actual data loading.

* Stores the loaded data set in the data class attribute.

*
* @param separator separator to use for file reading, e.g. a comma.

*/
private void loadData(String separator) {

CSVLoader loader = new CSVLoader();
loader.setFieldSeparator(separator);
try {

loader.setSource(new File(this.sourceFile));
this.data = loader.getDataSet();

} catch (IOException e) {
e.printStackTrace();
// see https://opensource.apple.com/source/Libc/Libc-320/include/

→˓sysexits.h
System.exit(66);

}
}

(continues on next page)

11.1. Feature Selection 103

Comprior Documentation

(continued from previous page)

}

Class for loading a data set from a file. Used by classes WEKA_FeatureSelector and WEKA_Evaluator.

Instances data

String sourceFile

public DataLoader(String sourceFile, String separator)
Constructor method. Loads the data from the specified source file and stores it in the data class attribute.

Parameters

• sourceFile – absolute path of the input file from which to load the data.

• separator – separator to use for file reading, e.g a comma.

public Instances getData()
Returns the loaded data set.

Returns the data set.

private void loadData(String separator)
Carries out the actual data loading. Stores the loaded data set in the data class attribute.

Parameters

• separator – separator to use for file reading, e.g. a comma.

public class AttributeSelector

package de.hpi.bmg;

import com.opencsv.CSVWriter;
import weka.attributeSelection.*;
import weka.core.Instances;

import java.io.*;
import java.util.logging.Logger;

/**
* Selector class that carries out the actual feature selection procedure.

* Invoked by

*/
public class AttributeSelector {

private final static Logger LOGGER = Logger.getLogger(AttributeSelector.class.
→˓getName());

private String selectionMethod;
private Instances data;
private AttributeSelection attributeSelection;

/**
* Constructor method.

*
* @param data the input data set from which to select the features.

(continues on next page)

104 Chapter 11. Java Code Documentation

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

Comprior Documentation

(continued from previous page)

* @param selectionMethod name of the feature selector to apply.

*/
public AttributeSelector(Instances data, String selectionMethod){

this.data = data;
this.selectionMethod = selectionMethod;

}

/**
* Do the actual feature selection.

* Based on the selector name, create corresponding instances of classes
→˓provided by WEKA and generate a feature ranking.

*/
public void selectAttributes() {

ASEvaluation eval;

switch (this.selectionMethod) {
case "SVMpRFE":

//the default kernel for WEKAs SVMAttributeEval is a poly kernel
→˓(as defined in class SMO)

eval = new SVMAttributeEval();

((SVMAttributeEval) eval).setPercentThreshold(10);

((SVMAttributeEval) eval).setPercentToEliminatePerIteration(10);

break;

case "GainRatio":

eval = new GainRatioAttributeEval();

break;

case "ReliefF":

eval = new ReliefFAttributeEval();

break;

default:

eval = new InfoGainAttributeEval();

}

Ranker ranker = new Ranker();

this.attributeSelection = new AttributeSelection();

this.attributeSelection.setEvaluator(eval);
this.attributeSelection.setSearch(ranker);

// perform attribute selection

long begin = System.currentTimeMillis();
(continues on next page)

11.1. Feature Selection 105

Comprior Documentation

(continued from previous page)

try {
this.attributeSelection.SelectAttributes(data);

} catch (Exception e) {
e.printStackTrace();

}

long end = System.currentTimeMillis();

long dt = end - begin;

LOGGER.info("" + dt + "," + this.selectionMethod);
System.out.println("" + dt + "," + this.selectionMethod);

}

/**
* Creates a feature ranking list and stores it in the specified file.

*
* @param saveLocation absolute path to the output file in which to store the

→˓ranking.

*/
public void saveSelectedAttributes(String saveLocation) {

try {

CSVWriter writer = new CSVWriter(new FileWriter(saveLocation + "/" +
→˓this.selectionMethod + ".csv"), '\t');

String[] header = {"attributeName","score"};

writer.writeNext(header);

double[][] rankedAttributes = this.attributeSelection.
→˓rankedAttributes();

for (int i = 0; i < rankedAttributes.length; i++) {

String attributeName = data.attribute((int)
→˓rankedAttributes[i][0]).name();

String score = "" + rankedAttributes[i][1];

String[] entry = {attributeName, score};

writer.writeNext(entry);
}

writer.close();

} catch (Exception e) {
e.printStackTrace();

}

}
}

106 Chapter 11. Java Code Documentation

Comprior Documentation

Selector class that carries out the actual feature selection procedure. Used by WEKA_FeatureSelector.

public AttributeSelector(Instances data, String selectionMethod)
Constructor method.

Parameters

• data – the input data set from which to select the features.

• selectionMethod – name of the feature selector to apply.

public void saveSelectedAttributes(String saveLocation)
Create a feature ranking list and stores it in the specified file.

Parameters

• saveLocation – absolute path to the output file in which to store the ranking

public void selectAttributes()
Do the actual feature selection. Based on the selector name, create corresponding instances of classes
provided by WEKA and generate a feature ranking.

11.2 Evaluation

public class WEKA_Evaluator

package de.hpi.bmg;

import com.opencsv.CSVWriter;
import org.apache.commons.lang3.ArrayUtils;
import weka.classifiers.AbstractClassifier;
import weka.classifiers.bayes.NaiveBayes;
import weka.classifiers.functions.Logistic;
import weka.classifiers.functions.SMO;
import weka.classifiers.lazy.IBk;
import weka.classifiers.trees.J48;
import weka.classifiers.trees.RandomForest;
import weka.core.Instances;

import java.lang.reflect.Array;
import java.util.Arrays;
import java.util.HashMap;
import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import java.util.logging.Logger;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

/**
* Entry point class for running classification on a data set using only the top
→˓1 up to k features (one classification round per k).

* Invoke the jar of this java file to start the classification procedure (see an
→˓example in :class:`evaluation.ClassificationEvaluator` how to do that).

* Uses class:`DataLoader` to load input data set and class:`Analyzer` to run the
→˓actual classification procedure (and compute evaluation metrics).

(continues on next page)

11.2. Evaluation 107

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

Comprior Documentation

(continued from previous page)

* Summarizes results from all classifiers and all input data sets (depending on
→˓how many features were used) and writes them into output files.

*/
public class WEKA_Evaluator {

private final static Logger LOGGER = Logger.getLogger(WEKA_Evaluator.class.
→˓getName());

/**
* Process some of the command line parameters (for classifiers, metrics, and

→˓input data set locations).

* Invokes classification procedure for every subdirectory (=selection
→˓method) that is contained in the input directory.

*
* @param args the parameters provided when invoking the jar. Provide the

→˓following parameters:

* - absolute path of the directory containing the reduced input
→˓data set files (one subdirectory per selection approach).

* - absolute path of the output directory (where to write all
→˓evaluation results).

* - minimum number of features to use for classification.

* - maximum number of features to use for classification.

* - k param for k-fold cross validation.

* - a string of classifiers, separated by a comma (e.g. "SVM,
→˓KNN3,KNN5").

* - a string of metrics to compute, separated by a comma (e.g.
→˓"accuracy,specificity,precision").

*/
public static void main(String[] args) {

//get reduced data set locations
File folder = new File(args[0]);
//the input path should only contain directories - one for each method
File[] listOfDirs = folder.listFiles();

//get classifiers from input
String classifierParams = args[5];
String[] classifiers = classifierParams.split(",");
//get metrics to use from input
String metricParams = args[6];
String[] metrics = metricParams.split(",");

for (File methodDir : listOfDirs) {

classifyAndEvaluate(methodDir.getName(), methodDir.getAbsolutePath(),
→˓new File(args[1], methodDir.getName()).getAbsolutePath(),

Integer.parseInt(args[2]), Integer.parseInt(args[3]),
→˓Integer.parseInt(args[4]), classifiers, metrics);

}
}

/**
* Runs the overall classification procedure for all feature set sizes of a

→˓particular selection approach.

* Creates the specified classifier objects and filewriters for the results.

* For every feature set size from topKmin to topKmax, invoke an instance of
→˓:class:`Analyzer`to carry out the actual classification and compute the metrics.

(continues on next page)

108 Chapter 11. Java Code Documentation

Comprior Documentation

(continued from previous page)

*
* @param selectionMethod the name of the feature selection method that

→˓generated the feature sets to evaluate.

* @param reducedDatasetLocation absolute path to the directory containing
→˓the reduced input files (with increasing feature set sizes) for classification.

* @param resultLocation absolute path to the output file to which to write
→˓the classification results.

* @param topKmin minimum number of features to use.

* @param topKmax maximum number of features to use.

* @param numFolds k parameter for k-fold cross validation.

* @param classifiers a list of classifier names to use for classification.

* @param evalMetrics a list of metric names compute for the classification
→˓results.

*/
private static void classifyAndEvaluate(String selectionMethod, String

→˓reducedDatasetLocation, String resultLocation, int topKmin, int topKmax, int
→˓numFolds, String[] classifiers, String[] evalMetrics) {

System.out.println(Integer.toString(Array.getLength(evalMetrics)));
System.out.println(reducedDatasetLocation);
System.out.println(selectionMethod);
System.out.println(reducedDatasetLocation);
System.out.println(resultLocation);

//LOGGER.info(Integer.toString(Array.getLength(evalMetrics)));
//LOGGER.info(reducedDatasetLocation);
//LOGGER.info(selectionMethod);
//LOGGER.info(reducedDatasetLocation);
//LOGGER.info(resultLocation);

HashMap<String, CSVWriter> writers = new HashMap<String, CSVWriter>();
try {

AbstractClassifier[] classifierObjects = null;
AbstractClassifier analyzer = null;
String[] classifierNames = null;
//create desired classifiers
for (String method : classifiers) {

switch (method) {
case "SMO":

analyzer = new SMO();
classifierObjects = (AbstractClassifier[]) ArrayUtils.

→˓addAll(classifierObjects, analyzer);
classifierNames = (String[]) ArrayUtils.

→˓addAll(classifierNames, "SMO");
break;

case "LR":
analyzer = new Logistic();
classifierObjects = (AbstractClassifier[]) ArrayUtils.

→˓addAll(classifierObjects, analyzer);
classifierNames = (String[]) ArrayUtils.

→˓addAll(classifierNames, "LR");
break;

case "KNN3":
analyzer = new IBk();
((IBk) analyzer).setKNN(3);
classifierObjects = (AbstractClassifier[]) ArrayUtils.

→˓addAll(classifierObjects, analyzer);
classifierNames = (String[]) ArrayUtils.

→˓addAll(classifierNames, "KNN3"); (continues on next page)

11.2. Evaluation 109

Comprior Documentation

(continued from previous page)

break;
case "KNN5":

analyzer = new IBk();
((IBk) analyzer).setKNN(5);
classifierObjects = (AbstractClassifier[]) ArrayUtils.

→˓addAll(classifierObjects, analyzer);
classifierNames = (String[]) ArrayUtils.

→˓addAll(classifierNames, "KNN5");
break;

case "NB":
analyzer = new NaiveBayes();
classifierObjects = (AbstractClassifier[]) ArrayUtils.

→˓addAll(classifierObjects, analyzer);
classifierNames = (String[]) ArrayUtils.

→˓addAll(classifierNames, "NB");
break;

case "C4.5":
analyzer = new J48();
classifierObjects = (AbstractClassifier[]) ArrayUtils.

→˓addAll(classifierObjects, analyzer);
classifierNames = (String[]) ArrayUtils.

→˓addAll(classifierNames, "C4.5");
break;

case "RF":
analyzer = new RandomForest();
classifierObjects = (AbstractClassifier[]) ArrayUtils.

→˓addAll(classifierObjects, analyzer);
classifierNames = (String[]) ArrayUtils.

→˓addAll(classifierNames, "RF");
break;

default:
System.out.println(method + " is no valid classifier/

→˓analysis module. Do nothing.");
//LOGGER.info(method + " is no valid classifier/analysis

→˓module. Do nothing.");
continue;

}

}

for (String metric : evalMetrics){
String filePath = resultLocation + "_" + metric + ".csv";
writers.put(metric, new CSVWriter(new FileWriter(filePath), '\t',

→˓CSVWriter.NO_QUOTE_CHARACTER,
CSVWriter.DEFAULT_ESCAPE_CHARACTER,
CSVWriter.DEFAULT_LINE_END));

String [] attributes = {"#ofAttributes"};
String [] average = {"average"};
String[] headerstart = (String[]) ArrayUtils.addAll(attributes,

→˓classifierNames);
String[] header = (String[]) ArrayUtils.addAll(headerstart,

→˓average);
writers.get(metric).writeNext(header);

}

File folder = new File(reducedDatasetLocation);
(continues on next page)

110 Chapter 11. Java Code Documentation

Comprior Documentation

(continued from previous page)

File[] listOfDirs = folder.listFiles();

for (int k = topKmin; k <= topKmax; k++) {
String datasetFile = "";
//get the file with k in its name and load its content
datasetFile = reducedDatasetLocation + "/top" + String.valueOf(k)

→˓+ "features_" + selectionMethod + ".csv";
System.out.println("###################################");
System.out.println(datasetFile);
//LOGGER.info("###################################");
//LOGGER.info(datasetFile);
if (new File(datasetFile).isFile()){

DataLoader dl = new DataLoader(datasetFile, "\t");
Instances data = dl.getData();
data.deleteAttributeAt(0);
data.setClassIndex(0);
Analyzer ce = new Analyzer(data);

System.out.println(": Starting classification evaluation with
→˓models " + Arrays.toString(classifierNames) + " with k of " + k + " [" +
→˓datasetFile + "]");

//LOGGER.info(": Starting classification evaluation with
→˓models " + Arrays.toString(classifierNames) + " with k of " + k + " [" +
→˓datasetFile + "]");

HashMap<String, String> results = ce.
→˓trainAndEvaluateWithTopKAttributes(k, numFolds, classifierObjects, evalMetrics);

for (String metric : writers.keySet()) {
CSVWriter writer = writers.get(metric);
String resultLine = results.get(metric);
String[] line = resultLine.split("\t");
writer.writeNext(line);
//writer.flush();

}
}
else {

System.out.println("No rankings found for k = " + Integer.
→˓toString(k) + ". Stop classification for " + selectionMethod + ".");

//LOGGER.info("No rankings found for k = " + Integer.
→˓toString(k) + ". Stop classification for " + selectionMethod + ".");

break;
}
System.out.println(": Finished classification evaluation with

→˓models " + Arrays.toString(classifiers) + " with k of " + k + " [" +
→˓datasetFile + "]");

//LOGGER.info(": Finished classification evaluation with models "
→˓+ Arrays.toString(classifiers) + " with k of " + k + " [" + datasetFile + "]");

}

//close all open file writers
for (String metric : evalMetrics) {

writers.get(metric).close();
}

} catch (IOException e) {
e.printStackTrace();

}
(continues on next page)

11.2. Evaluation 111

Comprior Documentation

(continued from previous page)

}
}

Entry point class for running classification on a data set using only the top 1 up to k features (one classification
round per k). Is invoked by evaluation.ClassificationEvaluator to start the classification proce-
dure. Uses DataLoader to load input data set and Analyzer to run the actual classification procedure (and
compute evaluation metrics). Summarizes results from all classifiers and all input data sets (depending on how
many features were used) and writes them into output files.

public static void main(String[] args)
Process some of the command line parameters (for classifiers, metrics, and input data set locations).
Invokes classification procedure for every subdirectory (=selection method) that is contained in the input
directory.

Parameters

• args – the parameters provided when invoking the jar. Provide the following param-
eters: a) the absolute path of the directory containing the reduced input data set files
(one subdirectory per selection approach), b) the absolute path of the output directory
(where to write all evaluation results), c) the minimum number of features to use for
classification, d) the maximum number of features to use for classification, e) num-
ber of folds for cross validation, f) a string of classifiers, separated by a comma (e.g.
“SVM,KNN3,KNN5”), and g) a string of metrics to compute, separated by a comma
(e.g. “accuracy,specificity,precision”).

private static void classifyAndEvaluate(String selectionMethod, String reducedDatasetLocation,
String resultLocation, int topKmin, int topKmax, int
numFolds, String[] classifiers, String[] evalMetrics)

Runs the overall classification procedure for all feature set sizes of a particular selection approach. Creates
the specified classifier objects and filewriters for the results. For every feature set size from topKmin to
topKmax, invoke an instance of Analyzer to carry out the actual classification and compute the metrics.

Parameters

• selectionMethod – the name of the feature selection method that generated the
feature sets to evaluate.

• reducedDatasetLocation – absolute path to the directory containing the re-
duced input files (with increasing feature set sizes) for classification.

• resultLocation – absolute path to the output file to which to write the classifi-
cation results.

• topKmin – minimum number of features to use.

• topKmax – maximum number of features to use.

• numFolds – k parameter for k-fold cross validation.

• classifiers – a list of classifier names to use for classification.

• evalMetrics – a list of metric names compute for the classification results.

public class Analyzer

package de.hpi.bmg;

import weka.classifiers.Evaluation;
(continues on next page)

112 Chapter 11. Java Code Documentation

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

Comprior Documentation

(continued from previous page)

import weka.classifiers.trees.J48;
import weka.classifiers.bayes.NaiveBayes;
import weka.classifiers.functions.Logistic;
import weka.classifiers.functions.SMO;
import weka.classifiers.lazy.IBk;
import weka.classifiers.trees.RandomForest;
import weka.core.Instances;
import java.io.IOException;
import java.util.logging.Logger;
import weka.classifiers.AbstractClassifier;
import java.util.HashMap;

import java.util.Random;

/**
* Carries out the actual k-fold cross validation on the specified classifiers.

* Computes the desired evaluation metrics.

* Uses WEKA.

*/
public class Analyzer {

private Instances data;

private final static Logger LOGGER = Logger.getLogger(Analyzer.class.
→˓getName());

/**
* Constructor method.

*
* @param data the data set to use for classification.

* @return An instance of Analyzer.

*/
public Analyzer(Instances data) {

this.data = data;
}

/**
* Runs the actual classification procedure.

* Uses WEKA to run multiple classifiers (originally specified in config
→˓file) in a k-fold cross validation manner.

* Computes standard evaluation metrics as required afterwards.

*
* @param numberOfAttributesRetained the data set to use for classification.

* @param numFolds number of folds for cross validation.

* @param classifiers a list of classifier objects to use for classification.

* @param metrics a list of names of evaluation metrics to compute for the
→˓results.

* @return the evaluation results as class:HashMap with the metric name as
→˓identifier and metric results (across classifiers and average) as values.

*/
public HashMap<String, String> trainAndEvaluateWithTopKAttributes(int

→˓numberOfAttributesRetained, int numFolds, AbstractClassifier[] classifiers,
→˓String[] metrics) {

HashMap<String, String> returnStrings = new HashMap<String, String>();
HashMap<String, Double> sums = new HashMap<String, Double>();
Evaluation eval = null;

(continues on next page)

11.2. Evaluation 113

Comprior Documentation

(continued from previous page)

//initialize maps for return strings and average computations
for (String metric : metrics){

String startString = Integer.toString(numberOfAttributesRetained);
returnStrings.put(metric, startString);
sums.put(metric, 0.0);

}

try {
eval = new Evaluation(this.data);

double sum = 0.0d;

//AbstractClassifier analyzer = null;

for (AbstractClassifier analyzer : classifiers){

//run the analysis
eval.crossValidateModel(analyzer, this.data, numFolds, new

→˓Random(1));
for (String metric : metrics) {

String returnString = returnStrings.get(metric);
double metricVal = 0.0;
switch (metric) {

case "accuracy":
metricVal = eval.pctCorrect();
break;

case "kappa":
metricVal = eval.kappa();
break;

case "AUROC":
metricVal = eval.weightedAreaUnderROC();
break;

case "sensitivity":
metricVal = eval.weightedTruePositiveRate();
break;

case "specificity":
metricVal = eval.weightedTrueNegativeRate();
break;

case "F1":
metricVal = eval.weightedFMeasure();
break;

case "matthewcoef":
metricVal = eval.weightedMatthewsCorrelation();
break;

case "precision":
metricVal = eval.weightedPrecision();
break;

}
returnString += "\t" + String.valueOf(metricVal);
returnStrings.put(metric, returnString);
//update overall sum for average computation
sum = sums.get(metric);
sums.put(metric, sum + metricVal);

}
}

(continues on next page)

114 Chapter 11. Java Code Documentation

Comprior Documentation

(continued from previous page)

for (String metric : metrics){
String returnString = returnStrings.get(metric);
returnString += "\t" + (sums.get(metric) / classifiers.length);
returnStrings.put(metric, returnString);

}

//System.out.println(eval.toSummaryString(true));

} catch (Exception e) {
e.printStackTrace();

}
return returnStrings;

}
}

Carries out the actual k-fold cross validation on the specified classifiers. Computes the desired evaluation met-
rics. Uses WEKA. Invoked by WEKA_Evaluator.

public Analyzer(Instances data)
Constructor method.

Parameters

• data – the data set to use for classification.

Return An instance of Analyzer.

public HashMap<String, String> trainAndEvaluateWithTopKAttributes(int
num-
berO-
fAt-
tributes-
Re-
tained,
int
num-
Folds,
Ab-
stract-
Classi-
fier[]
classi-
fiers,
String[]
met-
rics)

Runs the actual classification procedure. Uses WEKA to run multiple classifiers (originally
specified in config file) in a k-fold cross validation manner. Computes standard evaluation
metrics as required afterwards.

Parameters

• numberOfAttributesRetained – the data set to use for classification.

• numFolds – number of folds for cross validation.

• classifiers – a list of classifier objects to use for classification.

• metrics – a list of names of evaluation metrics to compute for the results.

11.2. Evaluation 115

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

Comprior Documentation

Returns the evaluation results as HashMap with the metric name as identifier and
metric results (across classifiers and average) as values.

116 Chapter 11. Java Code Documentation

CHAPTER 12

System Architecture

12.1 Components Architecture

The image below describes the system components and their interaction points. The interfaces correspond to concrete
methods (see the actual components’ class diagrams).

117

Comprior Documentation

12.2 preprocessing Class Diagram

This module contains all classes related to preprocessing. Every preprocessing functionality is encapsulated in its own
class, which must inherit from the abstract preprocessing.Preprocessor class (here marked in grey) and
implement its preprocessing.Preprocessor.preprocess() method

118 Chapter 12. System Architecture

Comprior Documentation

12.3 featureselection Class Diagram

This module contains all classes related to feature selection. Every feature selector is encapsulated in its own class,
which must inherit from the abstract featureselection.FeatureSelector class or similar (abstract classes
are marked in grey) and implement its featureselection.FeatureSelector.selectFeatures()
method.

12.4 knowledgebases Class Diagram

This module contains all classes related to external knowledge retrieval. Every knowledge base is encapsulated in two
classes, which must inherit from the abstract knowledgebases.KnowledgeBase class (the interface to the other
components) and bioservices’ REST class (the interface to the online web service). Abstract classes are marked in
grey.

12.3. featureselection Class Diagram 119

Comprior Documentation

12.5 evaluation Class Diagram

This module contains all classes related to evaluation functionality. Every evaluation functionality is encapsulated in
its own class, which must inherit from the abstract evaluation.Evaluator class (abstract classes are marked in
grey) and implement its evaluation.Evaluator.evaluate() method.

120 Chapter 12. System Architecture

CHAPTER 13

Indices and tables

• genindex

• modindex

• search

121

Comprior Documentation

122 Chapter 13. Indices and tables

Python Module Index

b
benchutils, 47

e
evaluation, 83

f
featureselection, 54

k
knowledgebases, 70

p
pipeline, 45
preprocessing, 51

123

Comprior Documentation

124 Python Module Index

Index

A
addlist() (knowledgebases.ENRICHR method), 70
Analyzer (Java class), 112
Analyzer(Instances) (Java constructor), 115
annotateGene() (knowledgebases.Enrichr method), 76
annotateGenes() (knowledgebases.Enrichr method), 76
AnnotationEvaluator (class in evaluation), 87
AnovaSelector (class in featureselection), 60
assignColors() (pipeline.Pipeline method), 46
assignMarkers() (pipeline.Pipeline method), 46
AttributeRemover (class in evaluation), 83
AttributeSelector (Java class), 104
AttributeSelector(Instances, String) (Java constructor),

107

B
benchutils (module), 47
BioMART (class in knowledgebases), 76

C
checkCoverage() (evaluation.KnowledgeBaseEvaluator

method), 89
checkPathwayCoverage() (evalua-

tion.KnowledgeBaseEvaluator method),
90

ClassificationEvaluator (class in evaluation), 84
classifyAndEvaluate(String, String, String, int, int, int,

String[], String[]) (Java method), 112
cleanupResults() (in module benchutils), 48
collectAlternativeSearchTerms() (featureselec-

tion.PriorKnowledgeSelector method), 58
combineRankings() (featureselec-

tion.KBweightedSelector method), 62
CombiningSelector (class in featureselection), 58
computeActivityScore() (featureselec-

tion.CORGSActivityMapper method), 68
computeActivityVector() (featureselec-

tion.CORGSActivityMapper method), 68
computeExternalRankings() (featureselec-

tion.KBweightedSelector method), 62

computeExternalRankings() (featureselec-
tion.LassoPenalty method), 63

computeFoldChangeDiffs() (evalua-
tion.RankingsEvaluator method), 86

computeGeneVariances() (featureselec-
tion.PathwayActivityMapper method), 69

computeKendallsW() (evaluation.Evaluator method), 84
computeKendallsWScores() (evalua-

tion.RankingsEvaluator method), 86
computeOverlap() (evaluation.AnnotationEvaluator

method), 88
computePValue() (evaluation.RankingsEvaluator

method), 86
computeStatisticalRankings() (featureselec-

tion.KBweightedSelector method), 62
CORGSActivityMapper (class in featureselection), 68
countAnnotationPercentages() (evalua-

tion.AnnotationEvaluator method), 87
createClassifier() (featureselection.WrapperSelector

method), 64
createDirectory() (in module benchutils), 48
createKnowledgeBases() (evalua-

tion.KnowledgeBaseEvaluator method),
89

createLogger() (in module benchutils), 48
createOrClearDirectory() (in module benchutils), 48
createParams() (featureselection.InfoGainSelector

method), 61
createParams() (featureselection.JavaSelector method),

57
createParams() (featureselection.LassoPenalty method),

63
createParams() (featureselection.MRMRSelector

method), 60
createParams() (featureselection.ReliefFSelector

method), 61
createParams() (featureselection.RSelector method), 57
createParams() (featureselection.SVMRFESelector

method), 64
createParams() (featureselection.VarianceSelector

125

Comprior Documentation

method), 61
createSelector() (featureselection.WrapperSelector

method), 64
createTimeLog() (in module benchutils), 49
CrossEvaluator (class in evaluation), 86

D
data (Java field), 104
DataCharacteristicsPlotting.R (directive), 94
DataLoader (Java class), 102
DataLoader(String, String) (Java constructor), 104
DataMovePreprocessor (class in preprocessing), 53
DatasetEvaluator (class in evaluation), 88
DataTransformationPreprocessor (class in preprocess-

ing), 52
de.hpi.bmg (package), 101
default_extension (knowledge-

bases.PATHWAYCOMMONSWS attribute),
72

disableLogFlush() (featureselection.FeatureSelector
method), 55

DISGENET (class in knowledgebases), 71
Disgenet (class in knowledgebases), 80
downloadEnrichedTerms() (knowledgebases.Enrichr

method), 75
drawBoxPlot() (evaluation.RankingsEvaluator method),

86
drawCombinedPlot() (evalua-

tion.KnowledgeBaseEvaluator method),
89

drawLinePlot() (evaluation.ClassificationEvaluator
method), 85

E
enableLogFlush() (featureselection.FeatureSelector

method), 55
enrich() (knowledgebases.ENRICHR method), 70
enrichGeneset() (knowledgebases.Enrichr method), 76
ENRICHR (class in knowledgebases), 70
Enrichr (class in knowledgebases), 75
evaluate() (evaluation.AnnotationEvaluator method), 88
evaluate() (evaluation.ClassificationEvaluator method),

85
evaluate() (evaluation.CrossEvaluator method), 87
evaluate() (evaluation.DatasetEvaluator method), 88
evaluate() (evaluation.Evaluator method), 84
evaluate() (evaluation.KnowledgeBaseEvaluator

method), 90
evaluate() (evaluation.RankingsEvaluator method), 86
evaluateBiomarkers() (pipeline.Pipeline method), 46
evaluateInputData() (pipeline.Pipeline method), 45
evaluateKnowledgeBases() (pipeline.Pipeline method),

45
evaluation (module), 83

Evaluator (class in evaluation), 83
executePipeline() (pipeline.Pipeline method), 47
export() (knowledgebases.ENRICHR method), 70
ExtensionSelector (class in featureselection), 66

F
FeatureMapper (class in featureselection), 67
featureselection (module), 54
FeatureSelector (class in featureselection), 54
FeatureSelectorFactory (class in featureselection), 54
filterMissings() (preprocessing.FilterPreprocessor

method), 52
filterPathways() (featureselection.NetworkSelector

method), 59
FilterPreprocessor (class in preprocessing), 52
flushTimeLog() (in module benchutils), 49
FS_LassoPenalty.R (directive), 92
FS_mRMR.R (directive), 91
FS_Variance.R (directive), 93

G
GCONVERT (class in knowledgebases), 72
Gconvert (class in knowledgebases), 77
genemap() (knowledgebases.ENRICHR method), 70
generateOverlaps() (evaluation.RankingsEvaluator

method), 85
get() (knowledgebases.PATHWAYCOMMONSWS

method), 73
getANOVAscores() (featureselec-

tion.CORGSActivityMapper method), 68
getAssociations() (knowledgebases.OpenTargets

method), 78
getAverageCorrelation() (featureselec-

tion.PathwayActivityMapper method), 69
getConfig() (in module benchutils), 47
getConfigBoolean() (in module benchutils), 48
getConfigValue() (in module benchutils), 47
getCUIs() (knowledgebases.UMLS method), 71
getData() (featureselection.FeatureSelector method), 55
getData() (Java method), 104
getExternalGenes() (featureselection.CombiningSelector

method), 58
getFeatures() (featureselection.FeatureMapper method),

67
getFeatures() (featureselection.FeatureSelector method),

55
getGeneScores() (knowledgebases.BioMART method),

77
getGeneScores() (knowledgebases.Disgenet method), 80
getGeneScores() (knowledgebases.Enrichr method), 75
getGeneScores() (knowledgebases.Gconvert method), 78
getGeneScores() (knowledgebases.Kegg method), 80
getGeneScores() (knowledgebases.KnowledgeBase

method), 74

126 Index

Comprior Documentation

getGeneScores() (knowledgebases.OpenTargets method),
79

getGeneScores() (knowledgebases.Pathwaycommons
method), 81

getLabels() (featureselection.FeatureMapper method), 67
getLabels() (featureselection.FeatureSelector method), 55
getName() (featureselection.CombiningSelector method),

58
getName() (featureselection.FeatureSelector method), 55
getName() (featureselection.KBweightedSelector

method), 62
getName() (featureselection.LassoPenalty method), 63
getName() (featureselection.NetworkSelector method),

59
getName() (featureselection.PriorKnowledgeSelector

method), 58
getName() (knowledgebases.KnowledgeBase method),

74
getPathwayGenes() (featureselection.FeatureMapper

method), 67
getPathwayNames() (knowledgebases.Kegg method), 79
getRelevantGenes() (knowledgebases.BioMART

method), 76
getRelevantGenes() (knowledgebases.Disgenet method),

80
getRelevantGenes() (knowledgebases.Enrichr method),

75
getRelevantGenes() (knowledgebases.Gconvert method),

77
getRelevantGenes() (knowledgebases.Kegg method), 79
getRelevantGenes() (knowledgebases.KnowledgeBase

method), 74
getRelevantGenes() (knowledgebases.OpenTargets

method), 78
getRelevantGenes() (knowledgebases.Pathwaycommons

method), 81
getRelevantPathways() (knowledgebases.BioMART

method), 77
getRelevantPathways() (knowledgebases.Disgenet

method), 80
getRelevantPathways() (knowledgebases.Enrichr

method), 75
getRelevantPathways() (knowledgebases.Gconvert

method), 78
getRelevantPathways() (knowledgebases.Kegg method),

80
getRelevantPathways() (knowledge-

bases.KnowledgeBase method), 74
getRelevantPathways() (knowledgebases.OpenTargets

method), 79
getRelevantPathways() (knowledge-

bases.Pathwaycommons method), 81
getSamples() (featureselection.FeatureMapper method),

67

getSearchTerms() (featureselec-
tion.PriorKnowledgeSelector method), 58

getTimeLogs() (featureselection.FeatureSelector
method), 54

getUniqueLabels() (featureselection.FeatureSelector
method), 55

getUnlabeledData() (featureselection.FeatureMapper
method), 67

getUnlabeledData() (featureselection.FeatureSelector
method), 55

getVersion() (knowledgebases.DISGENET method), 72
getVersion() (knowledge-

bases.PATHWAYCOMMONSWS method),
72

H
hasGenes() (knowledgebases.KnowledgeBase method),

75
hasPathways() (knowledgebases.KnowledgeBase

method), 74

I
IdentifierMapping.R (directive), 97
InfoGainSelector (class in featureselection), 61
instance (featureselection.FeatureSelectorFactory at-

tribute), 54
instance (knowledgebases.KnowledgeBaseFactory

attribute), 74
instance (knowledgebases.UMLS_AUTH attribute), 71

J
JavaSelector (class in featureselection), 57

K
KbSelector (class in featureselection), 61
KBweightedSelector (class in featureselection), 62
Kegg (class in knowledgebases), 79
KEGGPathwayParser (class in knowledgebases), 82
KnowledgeBase (class in knowledgebases), 74
KnowledgeBaseEvaluator (class in evaluation), 89
KnowledgeBaseFactory (class in knowledgebases), 73
knowledgebases (module), 70

L
LassoPenalty (class in featureselection), 63
LassoSelector (class in featureselection), 65
loadAnnotationFiles() (evaluation.AnnotationEvaluator

method), 88
loadConfig() (in module benchutils), 47
loadConfig() (pipeline.Pipeline method), 47
loadData(String) (Java method), 104
loadGeneRanks() (evaluation.RankingsEvaluator

method), 86

Index 127

Comprior Documentation

loadRanking() (in module benchutils), 48
loadRankings() (evaluation.Evaluator method), 84
loadTopKRankings() (evaluation.AttributeRemover

method), 83
logDebug() (in module benchutils), 48
logError() (in module benchutils), 49
logInfo() (in module benchutils), 49
logRuntime() (in module benchutils), 49
logWarning() (in module benchutils), 49

M
main(String[]) (Java method), 102, 112
mapDataMatrix() (in module benchutils), 51
mapFeatures() (featureselection.CORGSActivityMapper

method), 68
mapFeatures() (featureselection.FeatureMapper method),

67
mapFeatures() (featureselection.PathwayActivityMapper

method), 69
mapGeneList() (in module benchutils), 50
mapIdentifiers() (in module benchutils), 50
mapItems() (knowledgebases.BioMART method), 76
mapItems() (knowledgebases.Gconvert method), 77
MappingPreprocessor (class in preprocessing), 51
mapRanking() (in module benchutils), 50
MetaDataPreprocessor (class in preprocessing), 53
MRMRSelector (class in featureselection), 60

N
NetworkActivitySelector (class in featureselection), 66
NetworkSelector (class in featureselection), 58

O
OpenTargets (class in knowledgebases), 78

P
parsePathway() (knowledgebases.KEGGPathwayParser

method), 82
parsePathway() (knowledgebases.PathwayParser

method), 82
PathwayActivityMapper (class in featureselection), 69
Pathwaycommons (class in knowledgebases), 81
PATHWAYCOMMONSWS (class in knowledgebases),

72
PathwayParser (class in knowledgebases), 82
Pipeline (class in pipeline), 45
pipeline (module), 45
PostFilterSelector (class in featureselection), 66
PreFilterSelector (class in featureselection), 65
prepareDirectories() (pipeline.Pipeline method), 47
prepareExecution() (pipeline.Pipeline method), 45
prepareInput() (featureselection.PythonSelector method),

56

prepareOutput() (featureselection.LassoSelector method),
65

prepareOutput() (featureselection.PythonSelector
method), 56

prepareOutput() (featureselection.RandomForestSelector
method), 64

prepareOutput() (featureselection.Variance2Selector
method), 60

prepareOutput() (featureselection.WrapperSelector
method), 64

preprocess() (preprocessing.DataMovePreprocessor
method), 53

preprocess() (preprocess-
ing.DataTransformationPreprocessor method),
52

preprocess() (preprocessing.FilterPreprocessor method),
52

preprocess() (preprocessing.MappingPreprocessor
method), 52

preprocess() (preprocessing.MetaDataPreprocessor
method), 53

preprocess() (preprocessing.Preprocessor method), 51
preprocessData() (pipeline.Pipeline method), 47
preprocessing (module), 51
Preprocessor (class in preprocessing), 51
PriorKnowledgeSelector (class in featureselection), 57
PythonSelector (class in featureselection), 56

Q
query() (knowledgebases.DISGENET method), 72
query() (knowledgebases.GCONVERT method), 72

R
RandomForestSelector (class in featureselection), 64
RandomSelector (class in featureselection), 59
RankingsEvaluator (class in evaluation), 85
readInteractions() (knowledge-

bases.KEGGPathwayParser method), 82
readPathway() (knowledgebases.Pathwaycommons

method), 81
ReliefFSelector (class in featureselection), 61
removeAttributesFromDataset() (evalua-

tion.AttributeRemover method), 83
removeDirectoryContent() (in module benchutils), 48
removeFile() (in module benchutils), 48
removeUnusedAttributes() (evaluation.AttributeRemover

method), 83
retrieveMappings() (in module benchutils), 50
RSelector (class in featureselection), 57
runFeatureSelector() (pipeline.Pipeline method), 45
runJavaCommand() (in module benchutils), 49
runRCommand() (in module benchutils), 49
runSelector() (featureselection.AnovaSelector method),

60

128 Index

Comprior Documentation

runSelector() (featureselection.LassoSelector method), 65
runSelector() (featureselection.PythonSelector method),

56
runSelector() (featureselection.RandomForestSelector

method), 65
runSelector() (featureselection.Variance2Selector

method), 60
runSelector() (featureselection.WrapperSelector method),

64

S
saveSelectedAttributes(String) (Java method), 107
search() (knowledgebases.PATHWAYCOMMONSWS

method), 72
selectAttributes() (Java method), 107
selectFeatures() (featureselection.CombiningSelector

method), 58
selectFeatures() (featureselection.ExtensionSelector

method), 66
selectFeatures() (featureselection.FeatureSelector

method), 54
selectFeatures() (featureselection.JavaSelector method),

57
selectFeatures() (featureselection.KbSelector method), 62
selectFeatures() (featureselection.KBweightedSelector

method), 63
selectFeatures() (featureselection.LassoPenalty method),

63
selectFeatures() (featureselection.NetworkSelector

method), 59
selectFeatures() (featureselection.PostFilterSelector

method), 66
selectFeatures() (featureselection.PreFilterSelector

method), 65
selectFeatures() (featureselec-

tion.PriorKnowledgeSelector method), 57
selectFeatures() (featureselection.PythonSelector

method), 56
selectFeatures() (featureselection.RandomSelector

method), 59
selectFeatures() (featureselection.RSelector method), 57
selectFeatures() (pipeline.Pipeline method), 46
selectPathways() (featureselec-

tion.NetworkActivitySelector method), 66
selectPathways() (featureselection.NetworkSelector

method), 59
setParams() (featureselection.FeatureSelector method),

55
setTimeLogs() (featureselection.FeatureSelector

method), 55
sourceFile (Java field), 104
suppress_stdout() (in module knowledgebases), 70
SVMRFESelector (class in featureselection), 64

T
trainAndEvaluateWithTopKAttributes(int, int, Abstract-

Classifier[], String[]) (Java method), 115

U
UMLS (class in knowledgebases), 71
UMLS_AUTH (class in knowledgebases), 71
updateScores() (featureselection.KbSelector method), 61
updateScores() (featureselection.KBweightedSelector

method), 62
UpsetDiagramCreation.R (directive), 96

V
Variance2Selector (class in featureselection), 60
VarianceSelector (class in featureselection), 61

W
WEKA_Evaluator (Java class), 107
WEKA_FeatureSelector (Java class), 101
WrapperSelector (class in featureselection), 63
writeMappedFile() (featureselection.NetworkSelector

method), 59
writeRankingToFile() (featureselection.FeatureSelector

method), 56

Index 129

	Installation and Usage
	Install and Run Comprior from Source
	1. Installation
	2. Usage

	Run Comprior in a Docker Container
	Installing Java JDK and Maven on Ubuntu
	Troubleshooting

	Example Use Cases
	Breast Cancer
	Execution via Source Installation
	Execution via Docker Image

	Glioma
	Execution via Source Installation
	Execution via Docker Image

	Output Generated by Comprior
	Detailed Processing Outputs
	Plots on Datasets
	MDS plot
	Density Plot
	Box Plot

	Knowledge Base Coverage
	Gene Coverage Plots
	Pathway Coverage Plots

	Feature Rankings
	Ranking Overlaps

	Feature Annotations and Enrichments
	Annotation Overlaps
	Enrichment Overlaps

	Classification Performance
	Feature Selection Runtimes

	Input Data Sets
	Gene Expression Data
	Metadata
	Data for Cross-Validation

	Configuration Parameters
	General
	R
	Java
	Dataset
	Preprocessing
	Gene Selection - General
	Gene Selection - Methods
	Evaluation
	Rankings
	Classification
	Prediction (not implemented yet)
	Enrichr
	OpenTargets
	KEGG
	UMLS (needed to transform search terms into CUIs for using DisGeNET)
	DisGeNET
	PathwayCommons
	BiomaRt
	gConvert

	Folder Structure - Where to find what Files (In- and Output)
	input/
	intermediate/
	results/

	Knowledge Bases
	DisGeNET
	OpenTargets
	KEGG
	Retrieving Relevant Genes from Pathway Information
	Gene Association Score Computation from Network Information

	PathwayCommons

	Prior Knowledge Approaches
	Modifying Prior Knowledge Approaches
	Filtering
	Extension

	Combining Approaches
	LassoPenalty
	WeightedScore

	Network/Pathway Approaches
	NetworkActivity
	CorgsNetworkActivity

	Extending Comprior - How-Tos
	Add New Preprocessing Functionality
	1. Implement a new Preprocessor
	2. Update the Config File (optional)
	3. Include the Preprocessor in the Execution Pipeline

	Add a New Knowledge Base
	1 Implement KnowledgeBase Class
	2 Implement a Pathway Parser (optional)
	3 Implement Web Service Accessing Class
	4 Update the Config File
	5 Register the Knowledge Base at KnowledgeBaseFactory

	Add a new Feature Selector Approach
	1a. Implement a Feature Selector
	1b. Implement a Network Selector
	2. Update the Config File
	3. Register Feature/Network Selection Approach to the FeatureSelectorFactory

	Add Custom Code from R/Java/another Programming Languages
	Invoking R or Java Code
	Invoking Code from Another Programming Language than R or Java

	Python Code Documentation
	pipeline module
	benchutils module
	preprocessing module
	featureselection module
	knowledgebases module
	evaluation module

	R Code Documentation
	Feature Selection
	Utility

	Java Code Documentation
	Feature Selection
	Evaluation

	System Architecture
	Components Architecture
	preprocessing Class Diagram
	featureselection Class Diagram
	knowledgebases Class Diagram
	evaluation Class Diagram

	Indices and tables
	Python Module Index
	Index

